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Abstract – This paper proposes a fair extension of Keller-Segel equation based in the argument that 
bacteria exhibit proporties electric in their composition. The new mathematical form of this extension 
involves the integer-order Bessel functions. With this one can go through the electrodynamics of the 
representative scenarios in order to understand the social behavior of bacteria. From the theoretical side 
this paper demonstrates that, charged electrically, aggregation of bacteria would give rise to electric 
currents that hypothetically are the reasons for social organization and disruption among them. The 
electrical properties of bacteria from this mathematical proposal might be relevant in a prospective 
implementation of so-called Internet of Bio-Nano Things network, that aims to be characterized for having 
a very high signal/noise. 
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1. INTRODUCTION

Evelyn Keller and Lee Segel in 1971 reported in [1] 
that bacteria exhibit some relative preference to 
move through the highest concentrations of 
substrate instead of the lowest ones. This 
phenomenon was projected onto the equation 
known as the Keller-Segel equation and it is written 
as: 

𝝏 𝒃(𝒙, 𝒕)

𝝏𝒕
=

𝒅

𝒅𝒙
 [𝝁(𝒔)

𝒅𝒃(𝒙, 𝒕)

𝒅𝒙
] −

𝒅

𝒅𝒙
[𝒃(𝒙, 𝒕)𝝌(𝒔)

𝒅𝒔

𝒅𝒙
]  (𝟏) 

whose meaning of elements of this reads as follows: 

• 𝒃(𝒙, 𝒕)= bacteria density,

• 𝒔(𝒙, 𝒕) = substrate density,

• 𝝌(𝒔) = chemotactic coefficient,

• 𝝁(𝒔) = motility parameter.

Eq.1 can be seen actually as a kind of compensation. 
In effect, one can see that by putting 𝝌(𝒔, 𝒕)  and 
𝝁(𝒔)  as constants, then the positive change 
𝝏 𝒃(𝒙,𝒕)

𝝏𝒕
> 0 demands that:

𝒅𝟐𝒃(𝒙, 𝒕)

𝒅𝒙𝟐 >
𝒅𝟐𝒔(𝒙, 𝒕)

𝒅𝒙𝟐  .   (𝟐) 

That is valid over the allowed periods of bacteria 
substrate interaction. This has interesting 
consequences in the discipline of bacteria dynamics 
[2]. Clearly one can see that it encompasses the 

reason of the Keller-Segel equation, in the sense that 
bacteria can deplete substrate in an efficient manner. 
For example, Unluturk, Balasubramanian and Akyildiz 
[3] have used the Keller-Segel model in the study of
social behavior of bacteria inside the framework of
molecular communications as part of the fundamental
postulates of the prospective Internet of Bio-Nano
Things (IoBNT) [4]. Clearly one can appeal to physics
of Eq. 1 for a robust application inside the molecular
and phenomena at the nano-level. Since bacteria is
transporting a net electric charge, then a plethora of
ways to search their behavior represents an option to 
use theoretical scenarios of physics interactions and
the implcations that would rise in a scenario of bio-
nano technology. Thus, Eq. 1 opens various paths to 
understand both the physics and biophysics of
bacteria dynamics. Of course, Eq. 1 can also be seen
as a fair extension of diffusion equation [5].
In effect, Eq.1 to some extent can also be written as
𝝏 𝝆(𝒔,𝒕)

𝝏𝒕
= D 

𝝏𝟐𝝆(𝒔,𝒕) 

𝝏𝒔𝟐 + G(s, t) with D the diffusion

constant and G(s, t) enclosing a set of operations based 
at both spatial and time derivatives. Thus, emerges the 
questions: Are bacteria fully diffusive? What are then 
the physics of this possible diffusion? Here one can 
answer in terms of physics laws in: (i) Electricity, (ii) 
Thermodynamics, and (iii) Space-time propagation. 
The purpose of this paper is to extend Eq.1 when 
bacteria are composed by electrical material such as 
ions for instance, so that concrete electric interactions 
would take place.  
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In this manner a large amount of bacteria density 
might be described by micro-forces so that a 
combined description based in Newton forces and 
electrodynamics can add relevant information to 
the process of substrate degradation. In cases of 
complex dynamics, of course the usage of diffusion 
equation can be obsolete so that an upgraded 
version would have to be needed. For example, one 
can see the work of Rosen in 1984 [6] characterized 
by having differential equations inspired by the 
Navier-Stokes scenario in order to propose a theory 
of bacteria chemotaxis. The contribution of this 
paper is in essence the reformulation of the Keller-
Segel equation containing the integer-order Bessel 
functions. With this an analysis about the 
implications of electrodynamics is derived. The rest 
of this paper is structured as follows: In the second 
section, the Bessel-Keller-Segel equation is derived. 
Once this equation is established then in the third 
section the eletrodynamics equations are derived in 
a closed-form manner. Here the instantaneous 
electric current is presented. It is seen that the 
resulting distributions exhibit a certain similarity 
with the discharge of a typical RC circuit. Finally, in 
fourth section the conclusion of the paper is 
presented. 

2. EXTENSION OF THE KELLER-SEGEL
EQUATION

Actually, one can exploit Eq. 1 in many ways by 
which one can extract the dynamics of any 
aggregation of bacteria in different scenarios while 
under interaction with substrates [7], [8]. Bacteria 
as a biological unit can require particular 
capabilities in order to guarantee an optimal 
colonization. Although it is not clear whether 
bacteria dynamics behave as a linear or nonlinear 
system, throughtout this document it will be 
assumed the linear assumption that allows for exact 
extensions.  

Thus, for instance consider the case where 𝝁(𝒔) =
𝒈(𝒔) ≡ 𝒈(𝒙) and 𝝌(𝒔) = 𝒉(𝒔) ≡ 𝒉(𝒙) acquiring an 
explicit dependence on “ 𝒙  ” then from Eq. 1 one 
arrives at: 

𝝏 𝒃(𝒙, 𝒕)

𝝏𝒕
= 𝒈(𝒙) [

𝒅𝟐𝒃(𝒙, 𝒕)

𝒅𝒙𝟐 ] − 𝒉(𝒔) [
𝒅𝒃(𝒙, 𝒕)

𝒅𝒙

𝒅𝒔

𝒅𝒙
]  

− 𝒉(𝒔) [𝒃(𝒙, 𝒕)
𝒅𝟐𝒔

𝒅𝒙𝟐].   (𝟑) 

One interesting scenario is the stationary one with  
𝝏 𝒃(𝒙,𝒕)

𝝏𝒕
= 𝟎 . In this manner one can assume the 

following: 𝒉(𝒙) 𝒅𝒔/𝒅𝒙 = −𝒙 in the second term in 
the right side of Eq. 3, yielding: 

 𝒅𝒔(𝒙, 𝒕)

𝒅𝒙
 =  

−𝒙

𝒉(𝒔)
 ⟹    𝒔(𝒙, 𝒕) = − ∫

𝒙

𝒉(𝒔)
𝒅𝒙.    (𝟒) 

In this manner the Keller-Segel equation with 
𝒈(𝒙) = 𝒙𝟐 one gets: 

𝒙𝟐 [
𝒅𝟐𝒃(𝒙, 𝒕)

𝒅𝒙𝟐 ] + 𝒙 [
𝒅𝒃(𝒙, 𝒕)

𝒅𝒙
] − 𝒉(𝒙) [𝒃(𝒙, 𝒕)

𝒅𝟐𝒔

𝒅𝒙𝟐] = 𝟎.   (𝟓) 

2.1 Essential Assumptions 

Eq.5 lends itself to being operated towards two 
known differential equations. Although one can 
apply unphysical procedures, it is clear that in a first 
instance the Bessel structure can be a good 
candidate. In this manner, in order to construct an 
integer-order Bessel differential equation [9], one 
needs to impose at the rigth-side the following: 

𝒉(𝒔)
𝒅𝟐𝒔

𝒅𝒙𝟐 = − (𝟏 −
𝒏𝟐

𝒙𝟐),   (𝟔) 

that implies that there is a direct relation between 
the function 𝒉(𝒔) and the integer numbers 𝒏. On the 
other hand one can take the definition of Eq. 4 to be 
inserted in Eq. 6 yielding:      

−𝒉(𝒙)
𝒅

𝒅𝒙
 [

𝒙

𝒉(𝒔)
] = (𝟏 −

𝒏𝟐

𝒙𝟐),   (𝟕) 

where the signs have been canceled in both sides. 
Subsequently by applying the derivative in a 
straightforward manner then Eq. 7 can be read as: 

−𝒉(𝒙) [
𝒉(𝒔) − 𝒙

𝒅𝒉
𝒅𝒔

𝒅𝒔
𝒅𝒙

𝒉𝟐(𝒔)
] = 

− [
𝒉(𝒔) − 𝒙

𝒅𝒉
𝒅𝒔

𝒅𝒔
𝒅𝒙

𝒉(𝒔)
] = (1 −

𝒏𝟐

𝒙𝟐)  (𝟖) 

yielding a first-order differential equation that can 
be written as: 

⟹   𝒙
𝒅𝒉

𝒅𝒔
− 𝒉(𝒔)  =  𝒉(𝒔) (𝟏 −

𝒏𝟐

𝒙𝟐).   (𝟗) 

It was assumed the approximation given by 
𝒅𝒔

𝒅𝒙
 ≈ 𝟏, 

(resulting in a toy model for substrate dynamics 
that appears to be linear with 𝒙). It allows a direct 
solution of first-order differential equation that can 
be written as: 

𝒅𝒉

𝒉
= (

𝟐

𝒙
−

𝒏𝟐

𝒙𝟑)  𝒅𝒔    ⟹    𝒉(𝒔) =  𝐄𝐱𝐩 [𝒔 (
𝟐

𝒙
−

𝒏𝟐

𝒙𝟑)].   (𝟏𝟎) 
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In this manner the chemotactic coefficient is 
expressed in terms of “𝒙”. A direct solution for it 
yields the exponential form and depends directly on 
the substrate density “𝒔”. Therefore, one arrives at: 

 ⟹   𝝌(𝒔) =  𝐄𝐱𝐩 [𝒔(𝒙) (
𝟐

𝒙
−

𝒏𝟐

𝒙𝟑)]  (𝟏𝟏) 

Fig. 1 – The normalized chemotactic coefficient from Eq. 11 for 
up to 4 values of number “𝑛 ”, denoting the order of Bessel 
functions. For this it is assumed the unidimensional 
representation of s(x) = 𝑪𝒐𝒔[𝟐. 𝟓𝒙]𝑺𝒊𝒏[𝟎. 𝟏 ∗ 𝒙𝟐]. 

2.2 Charged Bacteria Density 

In Fig. 1 up to 4 different distributions of the 
normalized chemotactic coefficient are displayed 
under the assumption that the substrate density has 
the quasi-stochastic form given 

by  𝑪𝒐𝒔(𝟐. 𝟓 𝒙) 𝑺𝒊𝒏(𝟎. 𝟏 𝒙𝟐)  [10]. This 

mathematical approach comes from the fact that the 
existence of periodical manifestation of electric 
behavior would exhibit both attraction and 
repulsion, depending the state of pair: bacteria-
substrate. 

Thus, positive and negative values with rapid 
oscillation along the distances are expected to be 
allowed by the motility of bacteria. One can see that 
the higher order exhibits a well-shaped peak.  

2.3 The Bessel-Keller-Segel (BKS) Equation 

Therefore from Eq. 5 to Eq. 9 one arrives at a novel 
version of the Keller-Segel equation called BKS 
(Bessel-Keller-Segel), that is written below as: 

𝒙𝟐 [
𝒅𝟐𝒃(𝒙, 𝒕)

𝒅𝒙𝟐 ] + 𝒙 [
𝒅𝒃(𝒙, 𝒕)

𝒅𝒙
] + (𝟏 −

𝒏𝟐

𝒙𝟐) 𝒃(𝒙, 𝒕) = 𝟎  (𝟏𝟐) 

that is solvable for the bacteria density yielding 
imminently the integer-order Bessel functions: 

𝒃(𝒙, 𝒕) = 𝑩(𝒙, 𝒕) = 𝑱𝒏(𝒙, 𝒕)  (𝟏𝟑) 

Although a solid interpretation of Eq. 13 might not 
be adjusted to the scope of this paper, it is possible 
to some extent to adjudicate a meaning in terms of 

bacteria motility properties such as cooperative 
behavior. It is noteworthy that the negative values 
of Bessel functions are not describing physical 
solutions. Because of this, the positive values of 
bacteria density might be interpreted in terms of 
cooperative and competitive population, depending 
on the width of distribution. Clearly this requires 
the option of square of the Bessel functions that 
provides only physical meaning. Therefore from Eq. 
13 one arrives a the solutions given by: 

𝑩(𝒙, 𝒕)   ∝     |𝑱𝒏(𝒙, 𝒕)|2  (𝟏𝟒) 

Fig. 2 – The normalized bacteria density 𝑩(𝒙, 𝒕) as a function of 
distance (in arbitrary units) for the first 3 orders of Bessel 
functions and their tentative interpretation in terms of 
cooperative population. 

In Fig. 2 up to three possible bacteria density are 
displayed. For this a normalization function was 

opted, and it reads 2.9 𝜆𝐵√𝑥 − 𝑛 × 𝜆𝐴  where 𝜆𝐴  is 

about the 5% of 𝜆𝐵  for this exercise (this is assumed 
both free parameters 𝜆𝐴 and 𝜆𝐵 , to illustrate Fig. 2). 
Clealrly, both can be changed in more analytic 
scenarios. Therefore the density spectra for s fixed 
time “T” reads: 

𝑩(𝒙, 𝑻) = 𝜆𝐵√𝑥 − 𝑛 × 𝜆𝐴  |𝑱𝒏(𝑥 − 𝑛 × 𝜆𝐴, 𝒕, 𝑻)|2  (𝟏𝟓) 

In fact, inspired at the criterion of [3] in which the 
bacteria densities have a steady-state profile 
centered in 𝑥 − 𝑛 × 𝜆𝐴 being this dependent on the 
integer “𝑛 ”. One can see that while the order of 
Bessel function increases then one would expect the 
cooperative population moves with distance; as 
seen in Fig. 2 the distributions moves to the right.   

A compelling argumentation of why one calls 
cooperative population to the distribution (yellow 
color), can be directly seen in the width of each curve. 
Thus, when it is larger than the others, one arrives to 
the fact that bacteria join each other to perform a 
subsequent action ("Many make force”). A short 
width is perceived as The number of individuals 
along the time of interaction can be obtained from a 
simple integration 𝑵(𝒕) = ∫ 𝒅𝒙𝑩(𝒙, 𝒕). Thus one can 
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speculate that from the spatial displacement the 
velocity can be dependent on the Bessel order. In this 
view, from Eq. 13 with the time derivative then one 
arrives at: 

𝒅𝒃(𝒙, 𝒕)

𝒅𝒙

𝒅𝒙

𝒅𝒕
=  𝒗

𝒅𝒃(𝒙, 𝒕)

𝒅𝒙
 =  

𝑑𝑱𝒏(𝒙, 𝒕)

𝑑𝑥 
 (𝟏𝟔) 

and the straighforward usage of the recurrence 
relation of the integer-order Bessel function, then 
one gets  

𝒅𝒃(𝒙, 𝒕)

𝒅𝒙

𝒅𝒙

𝒅𝒕
⇒

𝒅𝒃(𝒙, 𝒕)

𝒅𝒙
 =  

𝟏

𝒗
[𝑱𝒏−𝟏(𝒙) −  𝑱𝒏+𝟏(𝒙)].      (𝟏𝟕) 

Although not any direct interpretation can be 
extracted from Eq. 17, it is emphasized that only  
experimental data can provide a robust 
interpretation and matching if any, from the 
implementation of Bessel functions in the Keller-
Segel scenario. Fig. 2 also exhibits a possible 
competitivity among bacteria along their 
displacements when all of them are under action of 
chemotaxis. This displacement per unit of time 
constitutes the aggregation bacteria velocity “𝒗” as 
written in right-side of Eq. 17. A tentative 
explanation about the origin of motility in certain 
types of bacteria, would be inside the territory of 
electricity where physics laws could explain 
inherent properties that are driven by electric 
forces, either attraction or repulsion. Some studies 
in the past about that have been reported, for 
example the one given in [11]. Under this view, the 
component ionic of bacteria emerges as the main 
point to board the problem of motility and 
chemotaxis. With this property, classic 
electrodynamics emrges as a sustained scenario to 
go through the bacteria motility properties. 

Therefore, one can anticipate that the 
displacements done by aggregations of bacteria is 
dictated by classic physics and its corresponding 
electrodynamics. It is actually not valid for 
distances less than 0.001nm where quantum 
mechanics governs. 

3. ELECTRODYNAMICS ANALYSIS OF
BESSEL-KELLER-SEGEL EQUATION

A first view to be debated is about the BKS equation’s 
solutions as done in Eq. 13 where the integer-order 
Bessel functions appear as the possible solutions of 
bacteria density. One can wonder if the volume 
integration returns the total electric charge. Actually, 
this fits well in electrodynamics in the sense that the 
total charge enclosed in a spherical volumen of 
radius “R” (for example, another spatial geometry 
can be opted as well). A straightforward integration: 

𝑸(𝒕) = ∫  𝒅𝑽 𝒃(𝒙, 𝒕)
𝑹

𝟎
=   ∫  𝟒𝝅𝒓𝟐 𝑱𝒏(𝒙, 𝒕) 𝒅𝒓

𝑹

𝟎
 Is seen as the 

net charge. Below in Fig. 3 the different normalized 
total charge distributions as a function of sphere 
radius "𝑹"  are displayed. One can see that the 
ampitude of distributions increases with the radius. 
For large radius, then one would expect strong 
attractions as well as repulsion forces, having direct 
implications with the highest and lowest levels in 
both cooperativity and competitivity. 

Fig. 3 – The normalized total charge of bacteria against the 
sphere radius exhibiting oscillations due to the Bessel-like 
behavior.  

Thus in those scenarios of high electric charge for 
example, one can consider the role of 
electrodynamics in relation to the level of 
disruption among populations from the fact that 
large accumulation of ions would generate electric 
forces among them. It should be noted that electric 
interactions can be a reason to disturb the purpose 
of colonization. This might affect the “so-called 
cheaters” and other types of social manifestations of 
bacteria when carrying out actions of chemotaxis. 
Furthermore, engineered nanodevices recovered of 
ionic material would constitute an interesting 
window to attack the problem of infection and the 
respective diseases caused by bacteria (or virus).  

With this background, it is feasible to derive a 
theory of classical electrodynamics from a BKS 
equation as expressed in Eq. 12. Thus, it can be 
written below in conjunction with time evolution as: 

𝝏 𝒃(𝒙, 𝒕)

𝝏𝒕
 =  𝒙𝟐 [

𝒅𝟐𝒃(𝒙, 𝒕)

𝒅𝒙𝟐 ] + 𝒙 [
𝒅𝒃(𝒙, 𝒕)

𝒅𝒙
] + (𝟏 −

𝒏𝟐

𝒙𝟐) 𝒃(𝒙, 𝒕).  

(𝟏𝟖) 

As seen in previous works, bacteria can transport 
electrically charged proteins and any type of ions 
that microorganisms can bring on them. This 
constitutes an argument to analyze the Keller-Segel 
equation in terms of electric charge.  
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Mathematically speaking, one can integrate the 
volume in both sides of Eq. 18 , so that one gets: 

𝑑

𝑑𝑡
∫ 𝒃(𝒙, 𝒕)𝒅𝑽  =  𝑥2

𝑑2

𝑑𝑥2 ∫ 𝒃(𝑥, 𝑡) 𝒅𝑽 + 𝒙
𝒅

𝒅𝒙
∫ 𝒃(𝒙, 𝒕) 𝒅𝑽

− (𝟏 −
𝒏𝟐

𝒙𝟐) ∫ 𝒃(𝑥, 𝑡) 𝒅𝑽   (𝟏𝟗) 

From the side of electricity, 𝒃(𝒙, 𝒕)  denotes the 
volumetric charge density transported by bacteria, 
fact that implies that its integration over the volume 
containing the charge turns out to be the net charge: 
𝑸(𝒕) = ∫ 𝒅𝑽 𝒃(𝒙, 𝒕). Under this view the left side of 
Eq. 19 is recognized as the instantaneous electric 
current. Thus, one arrives at: 

𝒅𝓠(𝒕)

𝒅𝒕
 = 𝑰(𝒕) =  𝑥2

𝑑2

𝑑𝑥2 ∫ 𝒃(𝑥, 𝑡) 𝒅𝑽 + 𝒙
𝒅

𝒅𝒙
∫ 𝒃(𝑥, 𝑡) 𝒅𝑽

− (1 −
𝑛2

𝑥2) ∫ 𝒃(𝑥, 𝑡) 𝒅𝑽  (𝟐𝟎) 

By assuming the cylindrical coordinates system 
then the variable “x” is now changed to be the radial 
coordinate. Then one gets: 

𝑰(𝒕) =  𝒓2
𝒅𝟐

𝒅𝒓𝟐 ∫ 𝒃(𝒓, 𝒕) 𝒅𝑽 + 𝒓
𝒅

𝒅𝒓
∫ 𝒃(𝒓, 𝒕) 𝒅𝑽 

− (𝟏 −
𝒏𝟐

𝒓𝟐 ) 𝓠(𝒕).   (𝟐𝟏) 

Now special attention is paid on the first term of the 
right side. Since 𝒃(𝑥, 𝑡)  have been defined as the 
density of charge transported by bacteria, then this 
term is processed as follows: 

𝒓2
𝑑2

𝑑𝑟2 ∫
𝓠(𝒕)

𝑨 𝒓
𝒅𝑽 =

𝒓2

𝑨
 𝛁 ∫ 𝛁 (

𝓠(𝒕)

 𝒓
) 𝒅𝑽   (𝟐𝟐) 

where the volume has been assumed to be 𝑽 = 𝒓 𝑨. 
The radial derivatives are actually the gradient 
operator that acts onto the electric potential [12] 
given by: 

𝚽(𝒓)  =  
𝓠(𝒕)

 𝟒𝝅𝜺𝒓
 .   (𝟐𝟑) 

With the balance of units and the incorporation of 
permissivity constant one arrives at: 

𝒓2
𝒅𝟐

𝒅𝒓𝟐 ∫
𝓠(𝒕)

𝑨 𝒓
𝒅𝑽 =

𝟒𝝅𝜺𝒓2

𝑨
 𝛁 ∫ 𝛁 (

𝓠(𝒕)

 𝟒𝝅𝜺𝒓
) 𝒅𝑽

=  
𝟒𝝅𝜺𝒓2

𝑨
 𝛁 ∫ 𝛁 𝚽(𝐫) 𝒅𝑽.   (𝟐𝟒) 

By which one can identify that in the last equation 
one has the field electric, thus one arrives at the 
divergence theorem , yielding that this contribution 
to the BKS equation is proportional to the square of 
cylindric radius. With this one gets that:  

𝟒𝝅𝜺𝒓2

𝑨
 𝛁 ∫ 𝛁 𝚽(𝐫) 𝒅𝑽 =  

−𝟒𝝅𝜺𝒓2

𝑨
 ∫ 𝛁. 𝐄 𝒅𝑽 

=
−𝟒𝒒(𝒕)𝝅𝜺𝒓2

𝑨𝒆
 (𝟐𝟓) 

Where Gauss’s law was employed but in the form of: 

∫ 𝛁. 𝐄 𝒅𝑽 =  
𝒒(𝒕)

𝒆
 (𝟐𝟔) 

With “ 𝒆 ” a permissivity constant different to "𝜺 ” 
because equipotential lines might not be inside the 
region of electric field in some points of space of 
bacteria displacement, so that only a single medium 
is not expected. Instead up two media or more can 
coexist together. A similar procedure can be applied 
to the second term of the right side of Eq. 21: 

𝒓
𝒅

𝒅𝒓
∫ 𝒃(𝑥, 𝑡) 𝒅𝑽 =

𝟒𝝅𝜺𝒓

𝑨
 ∫  𝛁 (

𝓠(𝒕)

 𝟒𝝅𝜺𝒓
) 𝒅𝑽   (𝟐𝟕) 

and again, one can construct the electric potential 
yielding finally that the term of Eq. 27 is linearly 
proportional to the cylindric radius:   

𝟒𝝅𝜺𝒓

𝑨
 ∫  𝛁 (

𝓠(𝒕)

 𝟒𝝅𝜺𝒓
) 𝒅𝑽   = 

𝟒𝝅𝜺𝒓

𝑨
∫ 𝛁 𝚽(𝐫) 𝒅𝑽 =

−𝟒𝝅𝜺𝒓𝑳

𝑨
∫ 𝐄 𝒅𝑨 =  

−𝟒𝒒(𝒕)𝝅𝜺𝒓𝑳

𝑨𝒆
.  (𝟐𝟖) 

It should be noted again that 𝒅𝑽 = 𝑳𝒅𝑨.  Therefore, 
when previous resulting equations done above are 
inserted in Eq. 21 then one arrives at: 

𝒅𝓠(𝒕)

𝒅𝒕
=  [−

𝟒𝒒(𝒕)𝝅𝜺𝒓𝟐

𝑨𝒆
 −  

𝟒𝒒(𝒕)𝝅𝜺𝒓𝑳

𝑨𝒆

− (1 −
𝒏𝟐

𝒓𝟐 )] 𝓠(𝒕).   (𝟐𝟗) 

Thus, one can see that all charges of the right side 
have a negative sign. Putting apart the total charge, 
then one arrives at: 

𝒅𝓠(𝒕)

𝒅𝒕
=  𝓠(𝒕) [−

𝟒𝝅𝜺𝒓𝟐

𝑨𝒆
 −  

𝟒𝝅𝜺𝒓𝑳

𝑨𝒆
− (𝟏 −

𝒏𝟐

𝒓𝟐)].   (𝟑𝟎) 

One can see that the apparition of sign ”-“ on the 
right side is because the possible existence of a type 
of discharge because the straightforward solution 
of Eq. 30 yields the familiar negative exponential.  

Electric interactions between compounds can be 
measured through the electric force as dictated by 
classical electrodynamics. To explore this, the total 
charge of bacteria should be explicitly done, thus 
from Eq. 30, 

𝒅𝓠(𝒕)

𝓠(𝒕)
=  [−

𝟒𝝅𝜺𝒓𝟐

𝑨𝒆
 − 

𝟒𝝅𝜺𝒓𝑳

𝑨𝒆
− (1 −

𝒏𝟐

𝒓𝟐 )] 𝒅𝒕,   (𝟑𝟏) 
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whose integration yields the closed-form solution: 

𝓠(𝒕) = 𝑸𝟎𝑬𝒙𝒑 [− ∫
𝟒𝝅𝜺

𝑨𝒆
(𝒓2   +  𝒓 + 𝜼 [1 −

𝑛2

𝒓2]) 𝒅𝒕
𝑇

0

]  

(𝟑𝟐) 

With 𝜼 =
𝐴𝑒

𝟒𝝅𝜺
 and by specifying the upper limit by 

“T” the net charge that is transported by the bacteria 

with the change 𝑹(𝒓) = 𝒓2   +  𝒓 + 𝜼 [1 −
𝑛2

𝒓2
], then Eq. 32  

can be written in compact form as: 

𝓠(𝑻, 𝒓) = 𝑸𝟎𝑬𝒙𝒑 [−
𝟒𝝅𝜺𝑻

𝑨𝒆
𝑹(𝒓)].   (𝟑𝟑) 

With this result, now the electric current that 
involves a more general electric description of 
bacteria aggregation transporting ions is given by 
the instantaneous derivative of Eq. 33 and written 
as: 

𝑰(𝒕 = 𝑻, 𝒓) = −
𝟒𝑸𝟎𝝅𝜺𝑻

𝑨𝒆

𝒅𝑹(𝒓, 𝒕)

𝒅𝒕
 𝑬𝒙𝒑 [−

𝟒𝝅𝜺𝑻

𝑨𝒆
𝑹(𝒓)].     (𝟑𝟒) 

On the other hand in the simplest case by which "𝒓" 
does not depend on time, then the integration over 
the time variable inside the exponential in Eq. 32 is 
trivial. In this manner the resulting electric current 
can be written in a simplified form as: 

𝒅𝓠(𝒕)

𝒅𝒕
= 𝑰(𝑻) = −

𝟒𝑸𝟎𝝅𝜺𝑻

𝑨𝒆
𝑹(𝒓)𝑬𝒙𝒑 [−

𝟒𝝅𝜺𝑻

𝑨𝒆
𝑹(𝒓)].      (𝟑𝟓) 

Actually the variable “𝑻” can be understood as the 
period in the which the bacteria aggregation 
behaves as an electric current. 

3.1 Biophysics Interpretation of Electrical 
Currents 

Eq. 34 is displayed in Fig. 4 exhibiting a minimum 
for 𝒓 ≈ 𝟐  a.u. For this plotting it was used as a 
numerical expression for Eq. 34 in the form of: 

𝑰(𝒕 = 𝑻, 𝒓) = 𝟎. 𝟎𝟎𝟎𝟏(𝟐𝐫 + 𝟎. 𝟎𝟏 +
𝟖

(𝐫)^𝟑
)𝑬𝒙𝒑[−𝟎. 𝟎𝟏(𝐫^𝟐 +

𝟎. 𝟎𝟏𝐫 + (𝟏 −
𝟒

(𝐫)^𝟐
))].           (36) 

As indicated at Fig. 4, bacteria aggregation would 
exhibit a kind of disruption as seen in the minimum 
value of current distribution. In this manner, one 
can wonder if it is an inherent property of bacteria 
aggregation or if it is a pure speculative theoretical 
result that might not be matched with experiments. 
It should be noted that all these procedures have 
been done under the assumption of a 1-Dimension 
model. Of course, realistic simulations might be 
necessary in order to identify rupture of electrical 
properties. As done in [14], memory-based 
chemotaxis would exibit drift velocities. So that one 
can argue that this drift dynamics might appear 
from electric phenomena more than a pure 

biological reason. 

Fig. 4 – The instantaneous current as a function of radial 
distance (Eq.36), expressed in in arbitrary units. Two phases 
can be perceived. 

Below in Fig. 5 the simplest scenario of Eq. 35 
written as I(t)=tExp(-t) is illustrated. The 
qualitative shape of electric current indicates its 
maximal value. Clearly, it is directly interpreted as 
the inverse scenario of Fig. 4 establishing a kind of 
complementarity with it. This triggers logic 
scenario establishing that organization is first and 
disruption is after.   

Fig. 5 – RC Discharge: The instantaneous current and period of  
electric interaction of bacteria as a function of radial distance, 
both expressed in in arbitrary units. This plot as well as Fig. 1, 
Fig. 2, Fig. 3 and Fig. 4 were done with the usage of Wolfram 
[13]. 

In this manner, one can see that from Fig. 4 and Fig. 
5 the possible existence of well-defined phases. This 
would characterize the BKS model. These possible 
phases would emerge from the fact that the Eq. 5 
exhibits a kind of electric discharge as a RC-circuit. 
It is in accordance to the negative exponential of Eq. 
35. Therefore, bacteria aggregation and their social
manifestations would be disrupted. In Fig. 5 the
instantaneous current falls down as a fact that
bacteria have “finshed” a social action leaving them
to break down the possible molecular
communications between them.
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4. CONCLUSION

In this paper, an extension of the Keller-Segel 
equation has been established. It has taken  
advantage of having a second-order differential 
equation to establish a novel Bessel-Keller-Segel 
equation by which, at a first instance, it would give 
information about the electric behavior of bacteria 
and the possible implications of this in the social 
behavior. This appears to be crucial in prospective 
nanonetworks. Therefore, the electrodynamics of 
an electrically charged bacteria aggregation has 
been derived through closed-form equations. 
Interestingly, the shape of the curve of derived 
current exhibits a kind of discharge. Although a 
tentative interpretation in terms of social 
disruption because social behavior of the bacteria 
population is assumed, simulations and 
experimental studies should be done to corroborate 
the theory of this paper. The assumptions made 
throughout this paper have served to minimize the 
mathematical load that involves a second-order 
differential equation. Indeed the resulting curves 
have kept a close relationship with well-known 
electrodynamics. 

In future work, some well-known families of 
bacteria and their data will be employed to explore 
the possible similarities with the present proposal. 
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