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Abstract – A novel Passive Reconfigurable Intelligent Surface (PRIS) with 100 × 100 elements, which is 
shaped to scatter flattened patterns in broadband, is presented to enhance the signal coverage of the 
indoor Non-Line-of-Sight (NLOS) area for 5G millimeter wave (mmWave) wireless communications. The 
signal from the base station antenna as a primary source can be deflected to the NLOS area by the 
proposed PRIS with a flattened scattering pattern that is insusceptible to being blocked. The broadband 
meta-atom, realized by the framed four arrow branches, operates from 24 GHz to 30 GHz. The genetic 
algorithm is applied to optimize the phase shift distribution of PRIS for a shaped pattern. Combining full-
wave simulation and 3D ray-tracing simulation, the signal coverage is computed in an indoor L-shaped 
corridor scenario for 5G mmWave wireless communications. To verify the design, the proposed PRIS is 
further manufactured and tested. The experimental results reveal that the signal enhancement in the 
NLOS area by the proposed PRIS with the flattened scattering pattern is superior to the conventional 
design. 
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1. INTRODUCTION

5G millimeter wave (mmWave) communications 
can provide a larger data transmission rate and 
lower latency due to its huge bandwidth [1, 2]; 
however, it suffers from inferiorities, huge 
transmission loss, and nonlinear sight blocking [3]. 
Traditionally, more active base stations are 
deployed due to signals susceptible to obstacles in 
the indoor mmWave communication system, which 
means high cost and power consumption. The 
repeater is an economic and effective method [4, 5]. 
One of the repeaters is the metal reflector, such as a 
metal plate and ball. The high profile and inflexible 
wave control due to Snell’s law limit its application. 
The other one is the dual antenna system. The signal 
received by the receiving antenna can be steered 
within a wide-angle range by the transmitting 
antenna. A Frequency Selective Surface (FSS) and 
reflect-array are also applied to indoor and outdoor 
communications [6-9]. A reflect-array antenna is 
another attractive candidate for mmWave 
communications with a low profile, high efficiency, 
flexible beam-scanning characteristics, etc., 
particularly for large-scale arrays [10, 11]. As can be 
seen, the main idea of the above two methods of a 
repeater is to cover a Non-Line-of-Sight (NLOS)  

scene into a Line-of-Sight (LOS) scene. When 
adopting the two types of repeaters to the indoor 
NLOS scene, the complicated corridors would need 
a large number of passive or active structures.  

Fig. 1 – Enhancing the signal coverage in the NLOS area for the 
indoor L-shaped corridor by PRIS 

A Metasurface (MS) is a planar artificial structure 
composed of subwavelength meta-atoms in an 
ordered sequence, offering a brand new means for 
mmWave communications compared with the 
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repeaters [12-16]. The concept of a Reconfigurable 
Intelligent Surface (RIS), based on the MS, is then 
developed to control the wireless channels [17-22]. 
Further, by investigating the information entropy of 
coding MS, a new information processing system is 
established by digital MSs [23-29]. According to the 
reflected waves that can be amplified or not [30], 
the RIS can be divided into the Passive 
Reconfigurable Intelligent Surface (PRIS) [31-32] 
and the Active Reconfigurable Intelligent Surface 
(ARIS) [33-40].  

By leveraging the RIS concept and hardware design, 
we propose a scheme to enhance the indoor NLOS 
signal coverage at the mmWave band, as shown in 
Fig. 1. Due to the limited diffraction capability of 
mmWaves, a typical L-shaped corridor will block 
the signals from the base station. If we assign a thin, 
low-cost, lightweight RIS on the wall of the corner 
to deflect the incoming signals, the original blocked 
NLOS area can be effectively communicated. We 
note that for such a ubiquitous corner the PRIS has 
an obvious cost advantage over the ARIS. To deflect 
the incident waves into a specific angle pointing to 
the NLOS area is a concrete idea; however, such a 
narrow beamwidth cannot sufficiently cover the 
blinded area. When there is an obstacle or people in 
the corridor the narrow pencil beam will be blocked 
to make the corridor a blind area again; therefore, 
the shaped beam may be a better choice [41]. 

Here, we present a broadband-shaped pattern PRIS 
for indoor mmWave communications. Compared 
with the conventional narrow beam design, it has a 
wider beamwidth in the horizontal plane. There 
exists countless studies on the reconfigurable meta-
atom and programmable meta-atom design; 
therefore, for simplicity, we use a fixed-functional 
metasurface to demonstrate the PRIS. The following 
paper is organized as follows. Section 2 will 
introduce the broadband Framed Four 
ArrowBbranches (FFAB) meta-atom design, 
flattened pattern design, and the indoor signal 
coverage simulation by 3D ray-tracing technique. In 
Section 3, the simulation and measurement 
experiment results are presented to validate the 
effectiveness of the PRIS. By analyzing the results, it 
shows that the broadband-shaped-pattern PRIS is a 
better candidate for signal blind coverage in the 
door mmWave communications. Finally, the 
conclusion of this paper is given in Section 4. 

2. BROADBAND-SHAPED-PATTERN PRIS 

 

Fig. 2 – Structure of the proposed broadband FFAB meta-atom 

2.1 Broadband four arrow branches element 

To implement the broadband-shaped-pattern PRIS, 
we propose the FFAB meta-atom, as shown in Fig. 2. 
The meta-atom is composed of a square ring and 
four arrow branches on the top layer of an F4B 
substrate with dielectric constant 2.2 and loss 
tangent 0.001. The structural parameters are 
W1=0.1×L2, W2=0.05×L2, H=1.5mm, L1=3.6mm, 
L3=0.608×L2, and L4=0.277×L2. This meta-atom is 
simulated with the Periodic Boundary Condition 
(PBC) in ANSYS Electronics Desktop 2020 and the 
reflection phase compensation curves versus length 
L2 are reported in Fig. 3. The phase responses can 
cover over 360° smoothly and are linear with a 
constant negative slope in the range from 24.5 GHz 
to 29.5 GHz, which indicates that the meta-atom has 
a broadband characteristic. Meanwhile, due to the 
element’s central symmetry, it can work at full-
polarization modes, which is very difficult for 
repeaters. 

 

Fig. 3 – Reflection phase compensation of the broadband FFAB 
meta-atom 

 

 

Yi et al.: Shaping flattened scattering patterns in broadband using passive reconfigurable intelligent surfaces for indoor NLOS wireless signal coverage enhancement

©International Telecommunication Union, 2023 51



 

2.2 Broadband flattened beam design for 
indoor signal coverage 

Based on the proposed broadband FFAB meta-atom, 
we employ the Genetic Algorithm (GA) to synthesize 
a flattened beam. Due to GA being mature and user-
friendly, only the specific design in this work is 
discussed. As mentioned above, the PRIS will be 
deployed on the wall of the corner; thus, only the 
horizontal-shaped pattern is concerned. Under such 
an assumption, the two-dimensional array 
synthesis problem is reduced to a one-dimensional 
array synthesis problem, which is significant for the 
inefficient GA. Besides, we use the simulated meta-
atom radiation patterns under PBC to replace the 
isotropic element factor in the conventional GA for 
array synthesis. To further simplify the 
optimization procedure, we use a periodic supercell 
that consists of four meta-atoms as an initial 
population condition in the GA algorithm. The 
target of the flattened beam is set from 48° to 62° 
with a 2 dB fluctuation constraint at 28 GHz.  

To validate our pattern synthesis procedure, a 
flattened pattern PRIS with 30 × 30 meta-atoms is 
optimized and simulated by ANSYS Electronics 
Desktop 2020. The simulation model and meta-
atom distribution are illustrated in Fig. 4(a). A 
standard horn antenna is applied as a source to 
excite the PRIS. We mention that the spherical 
phase wavefront of the horn is considered in this 
case; however, for a practical scenario, the incident 
waves are treated as quasi-plane waves. The 
simulated 3D radiation pattern at 28 GHz is shown 
in Fig. 4(b). The simulated 2D results from 24 GHz 
to 30 GHz are reported in Fig. 5. All the data is 
normalized. As can be seen, the optimization target 
at 28 GHz is in accordance with our goals. By 
observing the flattened patterns at other 
frequencies, we find that the wide beam coverage 
range moves to larger horizontal angles as the 
frequency decreases. This result can be explained 
by the fact that for a specific gradient structure a 
larger wavelength must correspond to a larger 
deflection angle to fulfill a 2π phase cycle, leading to 
a dispersive property. 

(a)   (b) 

Fig. 4 – (a) Full-wave simulation model and (b) simulated 
flattened pattern 

Fig. 5 – Simulated 2D broadband flattened patterns 

2.3 Indoor signal coverage simulation 

Furthermore, we conduct the indoor signal 
coverage simulation by Altair Winprop with a 3D 
ray-tracing technique. We note that the Customer 
Premises Equipment (CPE) for the simulator is our 
PRIS. We detail the simulation as follows. First, the 
received power of the PRIS which is illuminated by 
the base station antenna should be determined, 
which can be calculated by 

where Effective Isotropic Radiated Power (EIRP) is 
the equivalent omnidirectional radiation power of 
an active base station, Pr is the CPE received power, 

Gr is the CPE receiving antenna gain, and ( )RCS   is 

the Radar Cross-Section (RCS) pattern of the PRIS. 
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To achieve signal coverage, the angle of the shaped 
beam is set from 48° to 62°, and the left-side 
sidelobe is set to –25 dB. Then, the normalized RCS 
pattern can be expressed by: 
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The efficiency of forwarding can be used to 
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where r is the unit angle of the horizontal corridor, 

RCSm is the maximum value of ( )RCS  , and A is the 

aperture size of 360 mm × 360 mm. The efficiency 
of the proposed PRIS can reach over 90%, which 
means that the PRIS can retransmit most of the 
power of the active base station to the NLOS 
corridor.  

Further, to determine the signal coverage, the 
simulation in ANSYS Electronics Desktop and ray-
tracing simulation in Altair WinProp are combined. 
The PRIS can be equivalent to an active base station 
located in the position of the corner. Considering 
that the incident wave is approximately a plane 
wave incident vertically, the equivalent 
omnidirectional radiation power of the equivalent 
active base station reads, 

The signal coverage along the horizontal corridor 
mainly depends on the multipath propagation 
caused by the wall reflection. Finally, the scene of 
the L-shaped corridor and the equivalent active 
base station are modeled in the Altair WinProp with 
the height of 1.5 m and 20 dBm. In the model, the 
wall is set as a concrete wall, and the reflection loss 
and transmission loss are set as 9 dB and 40 dB, 
respectively. The number of ray-tracing is set to be 
5. The simulation results with and without PRIS are
given in Fig. 6 (a) and Fig. 6 (b).

It can be seen that the signal intensity in the blind 
area is enhanced over –90 dBm with the proposed 
PRIS. 

(a) 

(b) 

Fig. 6 – Indoor L-shaped corridor signal coverage simulation, 
(a) without and (b) with PRIS. The power level below –90 dBm 

is marked as white 

3. MEASUREMENT AND DISCUSSION

3.1 Measurement 

Fig. 7 – Fabricated flattened pattern PRIS 
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Fig. 8 – The normalized patterns of the flattened beam and 
pencil beam PRIS 

We synthesize a PRIS containing 100 × 100 meta-
atoms with a flattened pattern by GA and fabricate 
the prototype, as shown in Fig. 7. Before testing the 
PRIS with a flattened pattern in a practical 
environment, we measure the bistatic RCS of this 
PRIS. Additionally, a conventional PRIS with a pencil 
beam pointing at 50° is also measured. We report 
the measured normalized patterns of the flattened 
beam and pencil beam RIS in Fig. 8. From the 
simulation result, it can be seen that the beamwidth 
of the flattened beam is wider compared with the 
pencil beam PRIS. The signal can be transmitted 
into the blind area with multi-path and 
homogeneity characteristics to achieve better 
signal coverage. 

Fig. 9 – Illustration of the measurement environment 

Further, we conduct a practical signal coverage 
enhancement experiment using the fabricated PRIS 
in an L-shaped corridor, as shown in Fig. 9. The 
measurement system consists of three parts: the 
signal source, the PRIS, and the data collector. The 
L-shaped corridor is divided into two paths. The
signal source is composed of a signal generator and
high gain horn in Path 1. The data collector is
composed of a spectrum analyzer and low gain

waveguide probe fixed on a mobile car in Path 2. 
The horn, PRIS, and waveguide probe are all 1.5m 
high, and the horn and the waveguide probe are 
both vertically polarized. Fig. 9 also shows the 
actual scene of the L-shaped corridor along Path 1 
and Path 2 respectively. 

The data is sampled at an interval of 90 cm along 
Path 2. The power of the signal generator power can 
be calculated by: 

t t t tP EIRP IL G= + − (5) 

where ILt = 5.61 dBi is the insertion loss of the cable 
and connector and Gt = 20.8 dBi is the gain of the 
horn. The receiving power at different sampling 
points, 

r sp r rP P IL G= + − (6) 

where Psp is the received power of the spectrometer, 
ILr = 5.61 dBi is the insertion loss at the receiving 
end, and Gr = 5 dBi is the gain of the waveguide 
probe. 

Fig. 10 – The simulation and test results of the pencil beam 
PRIS and flattened beam PRIS at 28GHz 

Fig. 11 – The indoor test results of the flattened-shaped PRIS 
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3.2 Discussion 

The signal coverage simulation results in the Altair 
WinProp and the test results are shown in Fig. 10. 
From the results, the signal intensity is increased by 
about 20 dB and 15 dB on average at 28 GHz in the 
range from 5 m to 30 m along Path 2 for the 
flattened beam PRIS and the pencil beam PRIS, 
respectively. Besides, the simulated result is better 
than the tested ones because the NLOS scene of an 
L-shaped corridor in the soft WinProp doesn't
exactly match the reality and the calculation
process is not complicated in the actual situation.

Based on the above results, although both the pencil 
beam and the flattened beam PRIS can effectively 
enhance the indoor NLOS signal intensity, the 
shaped beam has a better coverage effect than the 
pencil beam. The simulation results are consistent 
with the measurement results. The effect of the 
signal enhancement of the shaped beam is 5 dB 
larger than that of the pencil beam. In addition, the 
shaped beam is wider and more flexible with more 
propagation paths, so that the signal coverage is not 
easily blocked by obstacles on the propagation path. 

We also report the broadband signal coverage 
enhancement from 24 GHz to 30 GHz in Fig. 11. The 
signal intensity in the blind area can be improved on 
average by about 20 dB. The correctness of the 
design of the shaped pattern PRIS with the FFAB 
meta-atom is verified. In addition, it can be found 
that the signal intensity decreases with the increase 
of frequency, mainly because the beam direction 
decreases with the increase of frequency, which 
leads to the power of the LOS propagation decrease. 

4. CONCLUSION

A novel broadband FFAB meta-atom is proposed to 
design a flattened pattern PRIS which is applied in 
indoor mmWave communications for a 
signal-blinded area. The reflection amplitude of the 
broadband FFAB element is less than 0.1 dB. The 
phase compensation can cover over 360°, which 
changes smoothly and is relatively parallel in the 
range from 24 GHz to 30 GHz with a full-
polarization response. The GA is used to synthesize 
the pattern in the horizontal plane to form the 
shaped beam. The measured results in a practical 
environment indicate that signal intensity in the 
blind area is all greater than –90 dBm with the 
flattened pattern PRIS while it is about –110 dBm 
without PRIS. The shaped beam has a better 
coverage effect, 5 dB larger, than the conventional 
pencil beam and is wider and more flexible with 

more propagation paths to deal with the signal 
blind area problem. Through the simulation and 
test results, the flattened pattern PRIS is compared 
with a pencil beam PRIS to prove the rationality of 
this work. 
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