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Abstract – The recently proposed Reconϔigurable Intelligent Surface (RIS) can reconstruct the wireless channels between 
the transceivers, thus it is regarded as a promising technology for future 6G wireless networks to enlarge their coverage and 
improve the capacity. However, RISs also impose some new challenges, such as an unaffordable overhead for channel 
estimation and high complexity for real‑time beam‑forming. Fortunately, the impressive success of Artiϔicial Intelligence 
(AI) in various ϔields has inspired its application in RIS‑aided communications to address these challenges. In this paper, 
two pairs of dominant methodologies of using AI for RIS‑aided wireless communications are discussed. The ϔirst one is 
the AI‑based algorithm design, which is illustrated by some examples of typical transmission techniques. The second one is 
the AI‑based architecture design, which breaks the classical block‑based design rule of wireless communications in the past 
few decades. The interplay between AI and RIS is also highlighted. Finally, key challenges and future opportunities in this 
emerging area are pointed out. We expect that this paper will stimulate more promising AI‑based investigations for 
RIS‑aided wireless communications.
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1. INTRODUCTION
Recently, an emerging technique calledReconϐigurable In‑
telligent Surface (RIS), also named Large Intelligent Sur‑
face (LIS), Intelligent Reϐlecting Surface (IRS), or pro‑
grammablemetasurface, has attracted extensive research
interest in the wireless communication society. Specif‑
ically, RIS is a class of special surfaces that can recon‑
ϐigure the propagation of Electromagnetic (EM) waves
[1]. A typical RIS consists of a large number of low‑cost
and passive elements, which are able to reconϐigure the
EM propagation by changing the phases, amplitudes, or
frequencies of incident waves, and then re‑radiate the
tuned EMwaves back to the environment. To fully exploit
the possible capacity gain brought by RISs, a estimation
of high‑dimensional RIS channel [2] and passive beam‑
forming for design for RIS [3] are two essential signal pro‑
cessing components of RIS‑aided wireless communica‑
tions. However, since a large number of RIS elements are
usually required to improve the communication capac‑
ity, these two components will result in an unaffordable
overhead for channel estimation and computational com‑
plexity for beam‑forming design. As a result, some new
methodologies are desired to address these challenges.
Artiϐicial Intelligence (AI) has achieved impressive suc‑
cesses in diverse ϐields, such as image recognition, self‑
driving vehicles, and so on [4]. The excellent success of
AI has inspired interest in the application of AI to RIS‑
aidedwireless communications. Speciϐically, Deep Learn‑
ing (DL) with enough hidden layers is capable of approxi‑
mating any continuous functions with arbitrary accuracy,
even those functions that are difϐicult to be precisely de‑
scribed by mathematical models. Thus, we are able to

solve some problems without exact models utilizing this 
feature. For example, in the multi‑RISs scenario with suf‑ 
ϐicient scatterers, where the signal may radiate to dif‑ 
ferent RISs and scatterers, accurate channel modeling is 
challenging. Moreover, AI methods are well‑known for 
their computational efϐiciency, which provides a power‑ 
ful tool to meet the challenging requirement of real‑time 
communications. Therefore, AI is attractive for address‑ 
ing large‑scale RIS‑aided wireless problems.
In this paper, we will discuss how to apply AI for RIS‑aided 
wireless communications by introducing two pairs of de‑ 
sign methodologies, i.e., AI‑based algorithm design and 
AI‑based architecture design. In particular, AI‑based al‑ 
gorithm design is able to reduce the overhead or speed 
up the algorithmic processing. This design methodology 
is illustrated by several transmission algorithm designs 
for RIS‑aided communications. Moreover, AI‑based ar‑ 
chitecture design utilizes AI to reform the classical block‑ 
based communication design principle. This methodol‑ 
ogy is supported by revolutionary joint transceiver de‑ 
sign based on AI, which consists of two classes: DNN‑ 
assisted transceiver design and DNN‑like transceiver de‑ 
sign. The principles, features, and performance of these 
AI‑based designs will be discussed in this article. More 
importantly, the interplay between AI and RIS will be 
highlighted in this article.
The rest of this article is organized as follows. Section 2 
provides the key features of RIS. The details of AI‑based 
algorithm design and the architecture design are investi‑ 
gated in Section 3. Challenges and future opportunities 
are discussed in Section 4, where the interplay of AI and 
RIS is presented. Finally, conclusions  are  drawn  in Section 5.
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Fig. 1 – An example of RIS‑aided wireless communications [1]

2. KEY FEATURES OF RIS

The system model and the basic structure of an RIS are 
shown in Fig. 1 [1]. RIS is able to generate real‑time di‑ 
rectional beams to different users in by individually ma‑ 
nipulating the phase shifts of elements, which may build a 
new paradigm of controlling the wireless environment in 
future wireless networks. The following advantages are 
expected by employing RIS in wireless communications.
First of all, RIS can overcome the blockage to a certain ex‑ 
tent. Speciϐically, RIS is able to rebuild the channel link 
blocked by obstacles as a reϐlective relay. Thus, RIS can 
enhance the wireless link robustness. Secondly, the cov‑ 
erage can be expanded by employing RIS in complicated 
propagation environments, especially in high‑frequency 
communication scenarios. With the increase of working 
frequency, the severe propagation attenuation at high fre‑ 
quencies will lead to a cliff‑like drop in received signal 
power. RIS can be deployed to provide an additional com‑ 
munication link to provide extra power for distant user 
equipment (UE). Moreover, due to the passive elements, 
RIS provides an energy‑efϐicient alternative of the tradi‑ 
tional Base Station (BS) or energy‑hungry phased array.
Even though RIS has a lot of advantages as mentioned 
above, the deployment of RIS meets many barriers in 
practice. First of all, as RIS has a large amount of pas‑ 
sive elements without signal processing capability, the 
overhead of key transmission techniques in an RIS‑aided 
wireless communication system is unaffordable. More‑ 
over, RIS with discrete phase shifts is preferred in prac‑ 
tice. This will make the transmission algorithm design of 
RIS‑aided wireless communication systems non‑convex. 
Even though some iterative optimization algorithms can 
be applied to solve the problem, the computational com‑ 
plexity is usually unaffordably high. Last but not least, in 
past decades, the block‑based design principle has dom‑ 
inated the wireless communication system design. In a 
block‑based design system, there are several functional 
blocks optimized with mathematical model and exper‑ 
tise  independently.  It is difficult  where the optimization

problem of the wireless communication system to con‑ 
verge to global optimum. Since the design of RIS‑aided 
wireless communications is even more complex than the 
wireless communications without RIS, it is harder to con‑ 
verge to global optimum for RIS‑aided wireless commu‑ 
nications. Fortunately, as the AI shows excellent perfor‑ 
mance in solving the non‑convex problems with high com‑ 
putational efϐiciency, it may offer an elegant solution to 
these challenges.

3. AI‑BASED DESIGN FOR RIS‑AIDED
COMMUNICATION

In this section, we will discuss dominant RIS‑aided wire‑ 
less communication systems assisted by AI schemes by 
classifying them into two categories: AI‑based algorithm 
design and AI‑based architecture design. Speciϐically, AI‑ 
based algorithm design adopts the AI method for speciϐic 
transmission techniques of RIS‑aided wireless communi‑ 
cations. For the AI‑based architecture design, jointly AI‑ 
based transceiver design for RIS is proposed.

3.1 AI‑based algorithm design
With the powerful learning capability and convenient 
implementation relying on parallel architectures, AI can 
also be used to speed up the process of an algorithm. We 
will present the methodology for RIS‑aided wireless 
communications using several typical transmission 
techniques, including channel estimation, precoding, and 
beam training.

3.1.1 Channel estimation
The channel estimation in RIS‑aided wireless communi‑ 
cation systems will meet greater obstacles than the tra‑ 
ditional systems. Fortunately, these obstacles can be ele‑ 
gantly solved by AI methods.
Firstly, one of the most serious obstacles is the unaf‑ 
fordable pilot overhead to estimate the high‑dimensional 
channel. To be speciϐic, most existing channel estimation 
algorithms only estimate the BS‑RIS‑UE cascaded chan‑ 
nel [5, 6], whose pilot overhead is proportional to the 
number of RIS elements. Therefore, due to a large number 
of RIS elements, the pilot overhead to estimate the chan‑ 
nel can be prohibitively high in practice. To address this 
issue, authors of [7] utilize a fraction of all RIS elements 
and obtain the partial channel among the BS, the UEs, and 
the chosen RIS elements, and then to reconstruct the com‑ 
plete channel among the BS, the UEs, and all RIS elements. 
Speciϐically, instead of using one CNN directly, inspired by 
the Ordinary Differential Equation (ODE), an ODE CNN‑ 
based framework is proposed to extrapolate the chan‑ 
nels from those estimated at chosen RIS elements, where 
the partial channel is the input and the complete chan‑ 
nel is the output. As for the simulation results, the pro‑ 
posed CNN‑based scheme can effectively compress the 
high-dimensional RIS channel and obtain accurate solutions.
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Fig. 2 – Conceptual representation of programmable wireless 
environments as a neural network

the desired beam. Based on these beam requirements of 
the user, the trained model can directly realize real‑time 
RIS beam‑forming. Simulation results demonstrate that 
AI‑based precoding design can improve performance and 
reduce the time complexity compared with the conven‑ 
tional design methods like particle swarm optimization. 
Additionally, in [13], the problem of RIS optimal precod‑ 
ing design is transformed into a classiϐication problem. 
Inspired by the superior performance of machine learn‑ 
ing in solving non‑convex classiϐication problems, a deep 
neural network is employed to predict the phase‑shifting 
classiϐication result of each RIS element and reduce the 
computational complexity signiϐicantly. These two pieces 
of work train the neural network to dig a mapping re‑ 
lationship between the inputs and the RIS conϐiguration 
in the ofϐline stage from a big training dataset, which is 
utilized to provide a good generalization ability. Then in 
the online stage, with the help of the trained networks, 
accurate predictions can be made from the inputs at a 
fast speed. It is the tradeoff between the time and data‑ 
consuming ofϐline training and real‑time utilization.
Secondly, instead of using a neural network to approxi‑ 
mate a traditional algorithm, a method, where an inter‑ 
pretable neural network aims at modeling wireless prop‑ 
agation is proposed to design RIS conϐiguration based on 
the process of DNN training [14]. As shown in Fig. 2, the 
wireless propagation of the RIS‑aided system is modeled 
as a DNN, where the walls are considered as layers of 
DNN and tiles as nodes of DNN. Concretely, the input is 
featured by propagation environments, for example, the 
numbers and locations of Txs and Rxs and operating 
frequencies. The corresponding output is the received 
power at Rx. During the training period, the DNN 
learns the wireless propagation environments and the 
output of the DNN is becoming closer to the expected 
received power. After training completes, the RIS 
conϐiguration is also obtained to facilitate the users.
Both AI‑based precoding methods utilize AI to avoid the 
iterative optimization algorithm with high computational 
complexity. However, the second method is more ϐlexi‑ 
ble, since it can realize different user requirements only 
if you change the output label of DNN as the expected re‑ 
quirements. Furthermore, a joint channel estimation and 
beam‑forming method based on AI is proposed to avoid 
a large channel estimation overhead and a difϐicult high‑
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Furthermore, an AI‑based channel estimation method is 
considered to solve the beam split effect in wideband RIS 
systems [8]. As the beam split effect could cause the 
different subcarriers to transmit to different physical 
directions, a serious channel estimation performance loss 
will be incurred regarding the same physical directions 
across the entire bandwidth. To estimate the 
frequency‑selective cascaded channel for RIS systems, 
authors of [8] proposed two De‑noising CNNs (DnCNNs) 
to extract the double‑structured sparsity features [9]. 
Speciϐically, the row‑structured and column‑structured 
features are detected by jointly exploiting multiple 
subcarriers, respectively. Then, the RIS cascaded 
channel is reconstructed according to the extracted 
double‑structured features. Finally, apart from the 
advantages in reducing pilot over‑head  and solving the beam 
split effect by AI, several pieces of work also utilize the AI 
method to improve estimation accuracy [10, 11]. For 
example, based on the noisy image acquired by least 
square method, a De‑noising CNN (DnCNN)‑based method is 
proposed to improve channel estimation accuracy [10].

3.1.2 Precoding
Precoding makes the signals propagate toward certain 
directions instead of radiating around, which can 
improve the spectral efϐiciency, expand the coverage area 
and reduce interference. Therefore, in RIS‑aided 
communications, precoding is a key technique to fully 
exploit the advantages of the RIS. By designing the 
conϐiguration of the RIS, the beam can be adjusted to 
transmit signals in a speciϐic direction. In particular, 
numerous joint precoding techniques with different 
design goals are proposed to improve the system 
performance of RIS‑aided communications. 
However, as mentioned before, the passive RIS with discrete 
phase shifts is preferred in practice, which results 
in a non‑convex RIS precoding optimization problem. It 
is hard to ϐigure out the closed‑form solution to this non‑ 
convex RIS precoding design problem. In this case, iterative 
search schemes are often utilized to solve this non‑convex 
problem, which still suffers from high complexity because the 
RIS aperture is usually large as mentioned before. 
Fortunately, by improving the precoding design module with 
AI, RIS can directly generate the beams re‑quired by the 
users with less time complexity. The AI‑based precoding 
methods can be divided into two categories as follows.

Firstly, most of the existing works on AI‑based precoding 
uses the the neural network to approximate a traditional 
algorithm to reduce the computational complexity. For 
example, in [12], an AI‑empowered RIS is designed and 
fabricated. Speciϐically, the CNN is applied to train the RIS 
precoding matrix with the radiation pattern, including the 
upper mask, lower mask, and direction information of 



Fig. 3 – The architecture of the DNN‑assisted transceiver design

3.2 AI‑based architecture design
In this subsection, we focus on AI‑based architecture de‑ 
sign for RIS‑aided communications. By AI‑based joint 
transceiver design, the performance of RIS‑aided commu‑ 
nications can be improved. Following the logical order, 
we ϐirst introduce the DNN‑assisted transceiver design 
and then present the more revolutionary DNN‑like joint 
transceiver design. In particular, DNN‑assisted design in‑ 
cludes classical DNN for jointly optimizing transceivers, 
which shows a performance gain in terms of the Bit Er‑ 
ror Rate (BER). By contrast, DNN‑like transceiver design 
does not include classical DNN, and the design of RIS‑ 
aided communications is realized by the training of DNN.

3.2.1 DNN‑assisted transceiver design
As mentioned before, RIS can manipulate the wireless 
channel with nearly passive elements, it is an energy‑ 
efϐicient way to improve the quality of the received sig‑ 
nals through a carefully designed RIS precoding matrix. 
However, an RIS has a large number of elements, and it 
is difϐicult to obtain the closed‑form solution of a precod‑ 
ing vector at the BS and precoding matrix at the RIS. Most 
of the existing works iteratively optimizes the precoding 
at the BS, the passive beam‑forming at the RIS, and the 
combiner at the user. However, utilizing the iterative op‑ 
timization algorithm may converge to a local optimum. 
To address this problem, as shown in Fig. 3, a DNN‑ 
assisted transceiver design is proposed [17] to directly 
optimize the BER performance in RIS‑assisted MIMO 
downlink communications, where the whole AI‑based 
communication system including baseband processing is 
jointly optimized. Speciϐically, in this structure, the BS 
and UE are equipped with DNNs to process the signal, and 
an RIS is used as the relay. The DNN at the BS aims at en‑ 
coding bits and generating the transmitted signal. Then 
the RIS reϐlects the incident transmitted signal and con‑ 
ϐigures it by tuning its phase, which is represented by the 
precoding matrix. Finally, the DNN at the UE decodes the 
received signals into predicted bits. The passive precod‑ 
ing matrix at RIS and the DNNs at the BS and the UE are 
jointly optimized.

Speciϐically, the passive precoding matrix at RIS and the 
parameters of DNNs at the BS and the UE are trained by 
minimizing the loss function, which is the cross‑entropy 
of input encoding bits b and output decoding bits b̂ 
under the power constraint and constant norm 
constraint. Next, for this optimization problem, a BP 
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dimensional passive beam‑forming design problem [15]. 
The key idea of this paper is to parameterize the neu‑
ral network to realize the direct mapping from the ob‑ 
serving pilots to the RIS beam‑forming conϐiguration. By 
eliminating the explicit RIS cascaded channel estimation,
the proposed joint channel estimation and beam‑forming 
method could realize higher sum‑rate performance, espe‑ 
cially in the limited pilot condition.

3.1.3 Beam training

As mentioned before, as the operating frequency in‑ 
creases, the direct BS‑UEs links become more vulnerable 
due to the severe blockage and propagation loss. An RIS 
can provide additional virtual links, and enhance the sig‑
nal power by implementing efϐicient precoding. However,
full or even partial knowledge of the channel state infor‑ 
mation at the transceivers is difϐicult to obtain during the 
initial access process. Therefore, the passive beam train‑
ing at the RIS and the beam training at the BS should be 
executed before data transmission, aiming at ϐinding the 
optimal spatial path that maximizes the received power
at UEs. In order to cover the target area with the pencil‑ 
like sharp beams, beam training requires a large num‑ 
ber of directional codewords in the beam training code‑ 
book. Moreover, the overhead of beam training in RIS‑ 
aided communications is determined by the product of
the number of codewords in the beam training codebook
at BS and that of RIS. Thus, beam training in RIS‑aided 
communications is practically challenging due to the mas‑ 
sive number of RIS elements. Therefore, in RIS‑aided 
communications, the conventional beam training meth‑ 
ods, for example, exhaustive search in codebook will lead
to an excessively high training overhead.

To solve this problem, a Deep Reinforcement Learning
(DRL) framework is proposed to predict the RIS code‑ 
word from the predeϐined codebook with minimal beam 
training overhead in [16]. In the proposed DRL frame‑ 
work, some elements on the RIS are equipped with ac‑ 
tive channel sensors. These active elements can both es‑ 
timate the channel and reϐlect the incident signal by ap‑ 
plying a tuned phase shift, while the passive elements on
the RIS are only reϐlectors. With the ability to estimate
the channel, RIS is adopted as an RL agent to acquire the 
current state and reward from the environment (i.e., var‑ 
ious scatterers and user locations), which is constructed
as the multipath signature. The multipath signature will
be utilized to generate the training samples in RL agent 
interaction and RL agent training. Speciϐically, the deep 
Q‑network is trained to map an input state (the multipath 
signature) to an output action (codeword of RIS reϐlection 
coefϐicients). Compared to the Supervised Deep Learning
(SL) solution, the proposed DRL solution can approach
the optimal rate with almost no more than one percent
of the beams operated by the SL method in the training 
phase.
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algorithm is used to optimize the system parameters 
until the loss converges. At last, the optimized 
parameters are actually deployed at the BS, RIS, and UE.

3.2.2 DNN‑like transceiver design

Despite the application in wireless communications, the 
implementation of DNN in practice also draws a lot of at‑ 
tention. In [18], rather than using the traditional com‑ 
puter platforms to implement DNNs, the optical plat‑ 
form (also called diffractive deep neural networks, D2NN) 
could realize DNN with diffractive surfaces. Speciϐically, 
as shown in Fig. 4, the diffractive surfaces can be consid‑ 
ered as the layers of the DNN, where each element on a 
given layer represents a neuron that is connected to other 
neurons of the next layer through optical diffraction. Each 
element either transmits or reϐlects the input wave, which 
acts as the secondary wave source. The characteristics of 
the secondary wave, such as phase, are determined reϐlec‑ 
tion coefϐicient at those elements. These reϐlection coef‑ 
ϐicients of each point or neuron are learnable diffractive 
network parameters that are iteratively adjusted during 
the training process. After an extensive training phase, 
the diffractive network parameters of D2NN are ϐixed and 
the reϐlection coefϐicients of the neurons of all layers are 
settled. The D2NN takes advantage of the property that 
light waves propagate at the speed of light. Therefore, 
this work may bring a potentially elegant solution to some 
communication problems with the high demand of time‑ 
liness, for example, the transmission on the Internet of 
Vehicles (IoV). However, the proposed D2NN in [18] has 
ϐixed DNN architecture once fabricated, thus it has the 
poor ability of generalization and cannot be re‑used for 
other scenarios.
To solve this problem, an on‑site Programmable Artiϐi‑ 
cial Intelligence Machine (PAIM) is proposed in [19]. In‑ 
stead of using diffractive surfaces, RISs act as the pro‑ 
grammable physical layers of D2NN and can be utilized 
for wireless communications. Speciϐically, the elements 
controlled by FPGA on RISs can be regarded as the ba‑ 
sis to construct the reprogrammable physical layers of 
D2NN. With the programmable elements on RIS, PAIM 
can execute various tasks including mobile communica- 
tion encoder-decoder, and real-time multibeam focusing 
via a multi-layer digital-coding RIS array.

Furthermore, a novel wireless transceiver based on 
the RIS neural network structure PAIM can be con‑ 
structed [20], which can process the signal without 
energy‑hungry RF modules compared to the traditional 
transceiver. In this architecture, all the traditional sig‑ 
nal processing is completed through the RIS array. Each 
RIS (known as the layer of DNN) is composed of multi‑ 
ple elements (known as the neurons), which are intercon‑ 
nected via EM wave propagation. The responses of RIS 
to EM waves can be changed with different external con‑ 
trol signals in speciϐic tasks. As mentioned before, due to 
the ability of PAIM to transmit waves at the speed of light, 
the PAIM‑based transceiver can handle the real‑time sig‑ 
nal processing task.

3.3 Interplay between AI and RIS
From the discussion above, we can ϐind that despite the 
signiϐicant differences between wireless AI and RIS, we fo‑ 
cus on their profound interplay to circumvent their 
weaknesses.
On the one hand, with great learning ability, AI can pro‑ 
mote the deployment of RIS in practice. In particular, AI 
can contribute to reducing the unaffordable overhead, in‑ 
cluding the pilot overhead in channel estimation and the 
training overhead in beam training. Moreover, relying on 
parallel architectures with convenient implementation, 
the process of the algorithm can be accelerated, such as 
the AI‑based precoding design in RIS‑aided communica‑ 
tions. On the other hand, the research on RIS also helps 
AI to develop. Speciϐically, as DNN can be implemented 
by the RIS, the DNN can operate at the speed of light. For 
speciϐic problems or functions, by leveraging the RIS, we 
can design some specialized RIS‑based DNNs for speciϐic 
problems with guaranteed performance.

4. CHALLENGES AND RESEARCH
OPPORTUNITIES

As mentioned above, the previous section presents en‑ 
couraging advantages of AI‑based designs for RIS‑aided 
communications. However, AI‑based designs are still at 
an early stage, and there remains many challenges for fur‑ 
ther study. In this section, we present ϐive key challenges 
in this area, and the research opportunities will also be 
discussed.

4.1 AI for near‑ϐield RIS beam training
As mentioned before, an RIS with a large number of recon‑ 
ϐigurable elements will have an enlarged array aperture. 
With the increase of the RIS aperture, the fundamental EM 
ϐield property may change. The EM ϐield has two cate‑ 
gories, i.e., the far‑ϐield region and the near‑ϐield region. 
The boundary between these two regions is the Rayleigh
distance [21], which is proportional to the square of the 
array aperture. Thus, as the number of RIS elements
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4.4 Generalization

Although AI schemes show great efϐiciency for the ex‑ 
isting wireless communication systems, they still suffer 
from the generalization ability due to the next three rea‑ 
sons. First of all, large amounts of data are usually un‑ 
available due to the passive elements of the RIS, which 
leads to the overϐitting problem. Therefore, the trained AI 
model only performs well on the training dataset. Then, a 
lot of AI models are trained under a ϐixed SNR and act well 
under this speciϐic SNR, which is unrealistic in the prac‑ 
tical communication system. Moreover, many AI mod‑ 
els are application‑speciϐic because AI techniques may ex‑ 
tract different channel features for different application 
scenarios.

4.5 Implementation

Apart from the challenges listed above, the implementa‑ 
tion of AI‑based methods in practical communication sys‑ 
tems is also a challenge. First, since most of the AI meth‑ 
ods are data‑driven and the training overhead is unac‑ 
ceptable, an additional structure such as a cloud server 
should be deployed based on the existing infrastructure. 
Second, for the AI‑based architecture design, the whole 
RIS‑based communication infrastructure is totally differ‑ 
ent from the traditional infrastructure equipped with a 
radio frequency chain and signal processing functional‑ 
ity. As the AI‑based architecture design may not replace 
the traditional infrastructure completely in a short time, 
a switching scheme is required to switch the AI‑based 
methods and the traditional methods.

5. CONCLUSIONS
In this paper, we have discussed two pairs of domi‑ 
nant methodologies for the applications of AI in RIS‑ 
aided wireless communications, namely AI‑based algo‑ 
rithm design and architecture design. We have started 
with the current challenges in RIS‑aided wireless commu‑ 
nications, and then demonstrated the speciϐic AI meth‑ 
ods to address those challenges. We have also analyzed 
their design principles, key features, and advantages to 
show that AI is capable of reducing the overhead and com‑ 
putational complexity, and also of changing the classi‑ 
cal architecture for wireless communications. In addition 
to the discussions above, there are still some challenges 
and research opportunities in this emerging area, such as 
the AI for near‑ϐield beam training. We believe that AI 
can offer a good solution to some important challenges 
of RIS‑aided wireless communications, and the interplay 
between AI and RIS can further make the RIS‑controlled 
environments more intelligent.
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dramatically increase, the near‑ϐield range will expand. For 
example, if an RIS with 256 elements is working at 100 GHz, 
the radius of the near‑ϐield region is about 100 m. 
Thus, the user will be in the near ϐield with a high prob‑ 
ability. However, the traditional beam training schemes 
designed for a far‑ϐield scenario is not suitable for a near‑ 
ϐield scenario. Speciϐically, when the BS or the UE is in the 
near‑ϐield region of the RIS, the EM wave arriving at differ‑ 
ent RIS elements has different incident angles and trans‑ 
mission distances. Therefore, the beam training code‑ 
book needs to cover not only all the possible angles but 
also all the different transmission distances, which results 
in prohibitive beam training overhead. In this case, the AI 
algorithm can be considered as one solution to reducing 
the beam training overhead.

4.2 AI for active RIS

Due to the “multiplicative fading” effect of an RIS, which 
means the BS‑RIS‑UE link will experience fading twice, 
the received power at the UE is usually weak. In this case, 
thousands or even more elements are required to com‑ 
pensate for the very serious attenuation of the BS‑RIS‑UE 
link, which will bring a lot of pressure to signal process‑ 
ing for RIS‑aided communications, for example, channel 
estimation with an unaffordable overhead. To mitigate 
the ”multiplicative fading” effect, an active RIS is proposed 
in [22], where the active RIS ampliϐies and reϐlects the in‑ 
cident signal with a power ampliϐier. In this new struc‑ 
ture, the ampliϐication matrix of the active RIS is required 
to design and the noise affected by the reϐlection‑type am‑ 
pliϐier should be considered. Therefore, the techniques 
mentioned previously like the channel estimation need 
to be re‑designed for the active RIS. Some AI algorithms 
mentioned previously can be adjusted to solve the chal‑ 
lenges in active RIS‑aided communications.

4.3 AI for RIS‑aided cell‑free systems

A cell‑free network is considered as a promising solu‑ 
tion to address inter‑cell interference, which improves 
the network capacity for the future communication sys‑ 
tems. Unlike the classical cellular network, in a cell‑free 
network, all BSs without cell boundaries jointly serve all 
users cooperatively. To improve the cell‑free network ca‑ 
pacity further, an RIS can be utilized as an alternative to 
the BS to further enhance the capacity with low cost and 
energy consumption [23]. However, due to a large num‑ 
ber of BSs and RISs in the cell‑free networks, the complex‑ 
ity increases sharply in the joint precoding design prob‑ 
lem and channel estimation problem at the BSs and RISs. 
An AI method is a potential way to reduce the signal pro‑ 
cessing complexity in an RIS‑aided cell‑free system.
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