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Abstract – Wireless communications at high‑frequency bands with large antenna arrays face challenges in beammanage‑
ment, which can potentially be improved by multimodality sensing information from cameras, LiDAR, radar, and GPS. In this
paper, we present a multimodal transformer deep learning framework for sensing‑assisted beam prediction. We employ a
convolutional neural network to extract the features from a sequence of images, point clouds, and radar raw data sampled
over time. At each convolutional layer, we use transformer encoders to learn the hidden relations between feature tokens
from different modalities and time instances over abstraction space and produce encoded vectors for the next‑level feature
extraction. We train the model on a combination of different modalities with supervised learning. We try to enhance the
model over imbalanced data by utilizing focal loss and exponential moving average. We also evaluate data processing and
augmentation techniques such as image enhancement, segmentation, background iltering, multimodal data lipping, radar
signal transformation, and GPS angle calibration. Experimental results show that our solution trained on image and GPS
data produces the best distance‑based accuracy of predicted beams at 78.44%, with effective generalization to unseen day
scenarios near 73% and night scenarios over 84%. This outperforms using other modalities and arbitrary data processing
techniques, which demonstrates the effectiveness of transformers with feature fusion in performing radio beam prediction
from images and GPS. Furthermore, our solution could be pretrained from large sequences of multimodality wireless data, on
ine‑tuning for multiple downstream radio network tasks.
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1. INTRODUCTION
Wireless communications beyond 5G is exploiting high‑
frequency bands such as mmWave and THz, in order
to boost the system capacity by utilizing large available
bandwidth. Massive antenna arrays have been leveraged
to create ultra‑narrow beams, so as to increase the re‑
ceived signal power and reduce interference on targeted
users. Signi icant challenges in beam management arise
in such systems and scenarios especially for high mobil‑
ity vehicle users, to provide ultra‑high reliable and low la‑
tency communications.
Multimodality sensory information has the potential to
improve wireless communications in a challenging en‑
vironment. Integrated sensing and communication has
been actively studied for 6G [1]. In the vehicular net‑
work scenario, a roadsideBase Station (BS) unit equipped
with a camera, LiDAR, radar, and GPS can produce im‑
ages, point clouds, radar signals, and location information
of the road environment, objects, and vehicle users (UE).
Such sensory data is potentially useful in assisting the BS
to analyze the radio transmission scenario, so as to pro‑
duce effective beammanagement.

1.1 Problem statement
In this paper, we present a transformer‑based multi‑
modal deep learning approach for sensing‑assisted beam
prediction, which is a solution to the DeepSense 6G prob‑

lem statement in the ITUAI/ML for 5G challenge 2022 [2].
The challenge aims to develop machine learning‑based
models that can adapt to diverse environmental features
and accurately predict optimal beam indices in entirely
new locations using a multimodal training dataset. The
objective is to enable effective generalization and sensing‑
aided beam prediction for improved wireless communi‑
cation systems. The challenge provides large multimodal
sensing datasets measured in a real environment. As
shown in Fig. 1, each data sample contains ive sequen‑
tial instances of camera images, LiDAR point clouds, and
radar signals, plus the irst two instances of UE GPS posi‑
tion [3]. The ground truth in this context refers to the cor‑
responding 64×1 power vectors obtained through beam
training at the receiver using a 64‑beam codebook, where
omni‑transmission is employed at the transmitter. TheBS
sensors capture LiDAR, radar, and visual data, while the
positional data is collected from GPS receivers installed
on the mobile vehicle. The dataset is measured in four
scenarios (31, 32, 33, 34) shown in Fig. 5. Scenarios
31 and 32 are measured in the daytime while scenarios
33 and 34 are at night. Note that scenarios 32 and 33
are in the same location but at different times. A devel‑
opment dataset is provided with thousands of samples
collected in scenarios 32, 33, and 34; and an adaptation
dataset is provided with tens of samples collected in sce‑
narios 31, 32, and 33. Both datasets have the ground‑
truth best beam of the UE associated with each sample.
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Fig. 1 – Schematic representation of the input data sequence utilized in this challenge task [2]

A test dataset with hundreds of samples is provided in all 
scenarios without labels. Speci ically, most labeled data 
resides in scenarios 32, 33, and 34, whilst half of the unla‑ 
beled data resides in scenario 31. The sampling rate of the 
sequences in the test set is the same as that of the adap‑ 
tation set but double that of the development set. The ob‑ 
jective is to evaluate how the developed model can gener‑ 
alize to the unseen scenario, in which the sensing data is 
collected in a different location, Field of View (FoV), time 
(day, night), and sampling rate.
The evaluation metric is a “Distance‑Based Accuracy 
Score (DBA Score)” with the top‑3 predicted beams [2]. 
The DBA score is de ined as:

DBA score = 1
3(𝑌1 + 𝑌2 + 𝑌3), (1)

where 𝑌𝐾, 𝐾 ∈ {1, 2, 3} is

𝑌𝑘 = 1 − 1
𝑁

𝑁
∑
𝑛=1

min
1≤𝑘≤𝐾

min(| ̂𝑦𝑛,𝑘 − 𝑦𝑛|
Δ , 1) . (2)

with 𝑦𝑛 and ̂𝑦𝑛,𝑘 are respectively ground truth and the
𝑘th most‑likely predicted beam indices of sample 𝑛 in the
dataset with a size of 𝑁 . Δ is a normalization factor and
set as 5.

1.2 Related work
There exists several solutions for multimodal sensor data
fusion for multiple downstream tasks, such as the Trans‑
Fuser framework proposed for autonomous driving [4].

However, the work is developed for computer vision ap‑
plications such as semantic segmentation, object detec‑
tion, recognition, and localization. The data is collected
from sensors equipped on the moving vehicles. In com‑
parison, our task has several unique challengeswhere the
TransFuser model is dif icult to solve. Firstly, our sensors
equipped on the BS produce much wider FoV than those
on vehicles. There are many static and moving objects in
the scene, but there are no labels or bounding boxes in‑
dicating the UE. Secondly, we have also radar signals and
GPS location, and how to utilize these modalities to assist
our task is unclear. Thirdly, beam prediction is a unique
application inwireless communications that has not been
well exploited withmultimodal sensors. In particular, the
relations between radio transmission scenarios and vi‑
sionary data on abstraction space is not straightforward,
making deep learning hard to generalize on unseen sce‑
narios [5].

The use of visual data for wireless communications has
been actively studied in recent years, includingmostwork
on beam prediction from the DeepSense group. This in‑
cludes the use of images for beam trackingwith Gated Re‑
current Unit (GRU)‑based deep learning [6]. Radar‑aided
beam prediction is studied in [7] using 2D Convolutional
Neural Network (CNN). It also proposes FFT to transform
radar signals to range angle and velocity maps for CNN.
LiDAR‑aided beamprediction is investigated in [8], which
is also based on GRU plus an embedding block to convert
3D point clouds to 1D vectors. Position‑aided beam pre‑
diction is studied in [9], which utilizes Multilayer Percep‑
tron (MLP). A fusion of vision and position has been stud‑
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ied in [10], which concatenates the normalized position
with extracted features from CNN to predict beams with
MLP. Despite that, a number of solutions have been de‑
veloped in this domain, most of which are not scalable to
different modalities of sensory data. To achieve this we
need to build a generalizedMLmodel which can learn the
abstracted features betweenmultiplemodalities, which is
a key target of this paper.

1.3 Contributions
Our contribution can be summarized as follows. First, we
develop a multimodal transformer framework for wire‑
less communication application of beam prediction and
prove that the model is lexible to adapt to different data
modalities in thewireless domain. Second, we investigate
several data processing and augmentation techniques
in computer vision for wireless applications, alongside
model training andvalidationmethods fordata imbalance
and domain adaptation problems. Third, we validatewith
real measurement data that our framework is effective
in producing beam prediction from multimodal sensory
data, and generalize to unseen scenarios. Finally, we dis‑
cuss that our framework could be extended to a genera‑
tivemodel pretrained on sequences ofmultimodality data
and ine‑tuned for multiple tasks in radio air interfaces.1
The rest of this paper is structured as follows. Section
2 describes our developed methods for multimodal sen‑
sor data transformation and processing. Section 3 de‑
scribes ourproposedmultimodal transformer framework
for sensing‑assisted beam prediction, with discussions
on the training method and extension capabilities. Sec‑
tion 4 presents experiments of our solution on the multi‑
modal beam prediction applications with discussions on
the studied approaches. Finally, the work is concluded
in Section 5 with some future research directions for the
framework.

2. MULTIMODAL DATA TRANSFORMATION
AND PROCESSING

2.1 Multimodal data transformation
We start by transforming LiDAR point clouds and radar
signals into 2D vector space as well as calibrating GPS lo‑
cation data.
For LiDAR data, we convert the raw point clouds into
an image‑like representation through a Bird’s‑Eye View
(BEV). Speci ically, the height, intensity, and density of
the 3D point cloud are mapped to the red, green, and
blue channels of a color image to generate the BEV im‑
age. Firstly, the point clouds within the Region Of Interest
(ROI) are discretized into grid cells. Secondly, the height
and intensity are encoded by theirmaximumvalues of the
points in each grid cell. Finally, the density of the points is
calculated [11]. The BEV representation for LiDAR point
1https://github.com/ITU-AI-ML-in-5G-Challenge/
DeepSense6G_TII.git

Fig. 2 – Combining radar Range‑Angle H𝑅𝐴 and 
Range‑Velocity H𝑅𝑉 maps [7]

clouds has certain advantages. It can be used on CNN [12] 
to extract hidden features, which can be further processed 
with images. Moreover, it can preserve the basic struc‑ 
ture of the point clouds and the depth information, while 
reducing the computational complexity in PointNet [11].

For radar data, we adopted the processing techniques 
used in [7]. The objective is to extract the range, the an‑ 
gles, and the velocity of the moving objects in the envi‑ 
ronment using 2D Fourier transform, as described in [7]. 
Since the camera and LiDAR do not provide explicit ve‑ 
locity information, we concatenate the Range‑Angle Maps 
with the Range‑Velocity Maps of the radar to preserve the 
speed information of the moving cars, as illustrated in Fig. 2. 
Further, radar signals provide reliable speed measurement 
regardless of weather conditions and lightness level [13].

GPS data plays an important role in locating the UE’s po‑ 
sition. However, it is not always available or accurate in a 
practical system (caused by connection and delay 
issues). In this challenge, only data from the irst two out 
of the ive GPS instances are provided. We irst transform 
the GPS coordinate of the UE and the BS from to the Carte‑ 
sian, then calculate the relative position between the UE 
and the BS of the 𝑛t h GPS data, denoted as (Δ𝑥𝑛, Δ𝑦𝑛).  
Afterward, we get the angle by arctan(Δ𝑦𝑛/Δ𝑥𝑛).

After exploring the dataset, we observed that the beam 
indices spread from 1 to 64 according to the UE’s locations 
from left to right in the images. As the camera is located 
close to the BS, the beam indices are associated with the 
relative position (angle) between the UE and BS. However, 
the angles of the same beam index are different between 
scenarios, because roads are located in different positions 
with reference to the BS. Therefore, we calibrate the angle 
of the central pixel in the images of all scenarios.

We irst manually select the data samples of these four 
scenarios where the UE is located in the middle of the 
images and their corresponding beam indices fall in the 
range of [31, 34].  We then calculate their angles accord‑ 
ing to their relative positions, as [𝜃1 = −50.52∘, 𝜃2 = 
44.8∘, 𝜃3 = 55.6∘, 𝜃4 = −60∘].  We rotate all the possible 
angles in each scenario with 𝜃𝑖,  (𝑖 = 1, 2, 3, 4).  Finally, 
we obtain the calibrated angles of the irst two instances.
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(a) The original image

(b) The enhanced image

Fig. 3 – Image enhancement in night scenario

2.2 Multimodal data processing
In this section, we introduce several data processing tech‑ 
niques on the multimodal data for training the multi‑ 
modal transformers on the beam prediction task.

2.2.1 Camera data
Beam prediction from camera data is related to object de‑ 
tection and tracking tasks in computer vision. However, 
since there are no labels of the targeted UE in the image, 
we cannot distinguish it from other vehicles or pedestri‑ 
ans. Therefore, we tried to enhance the visual information 
of the vehicles in the images to allow the model to better 
recognize our targeted object.
Brightness enhancement: To overcome the darkness is‑ 
sue in the night scenarios 33 and 34, we utilize MIRNet 
[14] to enhance the brightness of these images. The vehi‑ 
cles become clearer as shown in Fig. 3b, compared to the 
raw image in Fig. 3a.
Segmentation: To highlight the vehicles in the camera 
data, we use the PIDNet [15] to segment the vehicles from 
images in the daytime scenarios 31 and 32 shown in Fig. 
4. We also test this method on the brightened images 
in the night scenarios 33 and 34, but the performance is 
poor, which may be due to loss of background informa‑ 
tion.
Background masking: We also tried to mask the back‑ 
ground with the black color and keep the street scene. 
The images in the same scenario have the same back‑ 
ground because the camera is stable. Beam prediction 
can be partially seen as trajectory prediction over the hor‑ 
izontal axis. We can potentially make the neural network 
focus on the vehicle’s trajectory by making it dominant in 
the images, as shown in Fig. 5.

Fig. 4 – Image segmentation on vehicles (blue) in day scenario

(a) Scenario 31

(b) Scenario 32

(c) Scenario 33

(d) Scenario 34

Fig. 5 – Image background masking

2.2.2 LiDAR data

The LiDAR produces on average more than 16000 3D 
points in each time step. In order to reduce the size of 
the point‑cloud data to speed up training the model, we 
preprocessed LiDAR data in the following ways:

Background iltering: We removed data points that cor‑ 
respond to static objects i.e. buildings. Similar to images 
these regions are not in the Line‑Of‑Sight (LOS) link be‑ 
tween the BS and UE, which has less effect on the beam 
prediction. These points potentially add complexity and 
bias to the model. We subtract the background points 
from each point cloud frame using the moving average of 
all the frames in each scenario and then keep the desired 
region surrounding the moving vehicles.

FoV calibration: We crop the BEV projection of the Li‑ 
DAR data to keep its FoV consistent with the view in the 
images. This could potentially assist the CNN focus on the 
region aligned with the images, to better allow transform‑ 
ers to learn the relations between them.
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Fig. 6 – Multimodal transformers for sensing‑assisted beam prediction

2.2.3 Data augmentation
Due to data imbalance between scenario 31 and others,
we investigate data augmentation techniques to increase
the dataset size for this scenario.
Image: Beam selection relies mainly on the transmit‑
ter/receiver locations and the geometry/characteristics
of the surrounding environment [7]. In order to conserve
this geometric information, we use only some photomet‑
ric transformations that are ’safe’ for beam prediction
application [16]. We augment each image by randomly
changing the brightness, contrast, gamma correction, hue
channel, color saturation, the sharpness, and performing
Gaussian blurring on the image.
Point‑cloud: Similar to the camera data, we perform two
’safe’ data augmentation techniques for each point cloud
frame without deteriorating the geometric information
of the environment: randomly down‑sampling the point
cloudby a factor of10%, and adding small and random3D
position deviation for each point. These transformations
conserve the position and general shape of the objects in
the environment (cars, buildings, pedestrians, etc).
Radar signal: In order to augment the radar data, we add
a small and random noise to each normalized FFT coef i‑
cient. The added noise is limited to 10% of each FFT com‑
ponent amplitude in order to conserve the shape of the
spectrum. Hence, this transformation is ’safe’ in the spec‑
tral domain.
Multimodal data lipping: According to the observa‑
tions beam indices spread from 1 to 64 in the images, we
horizontally lip the images, radar, and the point cloud
data to achieve the augmentation purpose. Meanwhile,
to keep the GPS data and beam indices consistent with
themultimodal data, we reverse the calibratedGPS angles
and get the new beam indices by subtracting the original

3. MULTIMODAL TRANSFORMERS FOR
BEAM PREDICTION

In this section, we introduce our solution of a multimodal 
transformer framework for wireless communications and 
deep learning algorithms for sensing‑assisted beam pre‑ 
diction.

3.1 Multimodal transformer architecture
With multimodality data transformed into 2D vector 
spaces, we leverage CNN to extract the higher‑order fea‑ 
tures, and then learn the relations between them using 
transformers. Since the image, point‑cloud, and radar 
signal raw data resides in very different representation 
spaces, it is dif icult to create effective mathematical func‑ 
tions, i.e. through category theory, to transform them 
into a common abstraction space, in order to learn their 
structures. However, with multiple layers of learning ex‑ 
traction on CNN and relations on transformers, the deep 
learning model could potentially converge on an effective 
representation of multiple modalities. Such represen‑ 
tation can be ine‑tuned for different downstream tasks 
which is essentially a structure minimization process. 
In this context, we build a multimodal transformer archi‑ 
tecture as illustrated in Fig. 6. We irst employ a deep res‑ 
idential network (ResNet) [17] to encode the image, point 
cloud, and radar signal on feature space. Speci ically, the 
ResNet is used on each of the ive instances of the RGB im‑ 
age, LiDAR BEV, and radar range angle‑velocity map, after 
normalization and scaling to a 512 × 1 feature vector. 
Each ResNet block of convolution, batch normalization, 
non‑linear activation, and pooling produces an abstracted

indices from 65.
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feature vector as tokens. Note that for each modality 
we have ive tokens sampled in different time steps. We 
use transformer encoder layers after each convolutional 
block to fuse the intermediate abstractions between the 
modalities of the image, point cloud, and radar map. The 
transformer uses linear projections for computing a set 
of queries, keys, and values. Scaled dot products are 
used between queries and keys to compute the attention 
weights and then aggregate the values for each query. 
Finally, a non‑linear transformation is used to calculate 
the output features. It applies the attention mechanism 
multiple times throughout the structure, resulting in at‑ 
tention layers with multiple heads to generate several 
queries, keys, and values. Since each convolutional block 
encodes different aspects of the scene at different layers, 
thus several transformer blocks are used to fuse these fea‑ 
tures at multiple scales throughout the encoder.
The transformer learns the correlation between data at 
different modalities and time steps. In theory, the fusion 
of image and point cloud can better represent the scene, 
especially in some dark and night scenarios. Further‑ 
more, the radar velocity and angle map can position the 
mobility objects in the scene. In this manner, the trans‑ 
former could estimate the position of the target UE in the 
scene at the 5𝑡ℎ instance.
The fused feature maps of different modalities are propa‑ 
gated to the next convolutional blocks and repeated sev‑ 
eral times with transformer blocks, and inally added to‑ 
gether to be a 512 × 1 feature vector. Because the cali‑ 
brated GPS locations (angles) have more apparent infor‑ 
mation than the other three pieces of data and only the 
irst two instances are available, these two angles are con‑ 
catenated with the 512×1 vector and passed through MLP 
layers to produce weights of 64 beam index using the soft‑ 
max function.

3.2 Training and optimization for beam 
prediction

We develop a number of training and optimization mech‑
anisms to customize the model to the beam prediction
task. Firstly, we transform the one‑hot beam indexes to
Gaussian distribution, by positioning the peak at the best
beam and cutoff to 0 at its neighboring ive beams. This is
to adapt the cross‑entropy loss function to the DBA score,
where higher weights are given if the beams are closer to
the best beam.
We further apply a focal loss [18] method to improve
training on a sparse set of hard examples. Data imbalance
is a signi icant challenge in this task. The data samples
from scenario 31 are much less than others. Moreover,
some beams have much less probability to be served as
the best beam than others. The adaptation dataset is with
a different sampling rate than the development dataset.
To differentiate between easy and hard examples, a mod‑
ulating factor (1 − 𝑝𝑡)𝛾 is added to the cross‑entropy loss,
with tunable focusing parameter 𝛾 ≥ 0. Intuitively, it re‑
duces the loss contribution from easy examples and ex‑

We also employ several training methods to stabilize the 
convergence and make the model robust. We maintain 
the Exponential Moving Average (EMA) of the parameters 
during training, instead of utilizing the inal trained val‑ 
ues. This eliminates the luctuation at the inal steps and 
makes the model robust.

4. PERFORMANCE EVALUATIONS AND
DISCUSSIONS

We performed experiments to train and evaluate our
proposed multimodal transformer and data processing
frameworks for beam prediction over the DeepSense
challenge dataset [3]. The performance is measured in
the DBA score de ined in Eq. (1), where the distances of
the predicted beam to the ground‑truth top three beams
are averaged according to the mmWave received signal
power from the vehicle UE to BS.

4.1 Beam prediction accuracy
We combine the development and adaptation datasets,
then randomly split them into 90% for training and 10%
for validation (to choose the best model weights and hy‑
perparameters). The learning rate is set to start from
10−4. We validate and compare the performance us‑
ing different proposed data preprocessing, augmentation,
ResNets (ResNet18andResNet34) andmodel training ap‑
proaches, according to the accuracy scores evaluated on
the test dataset provided by the organizer. The hyper‑
parameter with the best performance on the validation
dataset is submitted for evaluation. Since the training and
test datasets have a large imbalance in scenario 31, it can
show the generalization capability of the trained model
performing in the unseen scenario.
The experimental results of different model training and
data processing schemes are shown in Table 1. We com‑
pare the performances of the model on camera, radar, Li‑
DAR, GPS, and multimodality data. We can irst observe
that the experiment using ResNet34 to encode images has
a higher accuracy than thatwith ResNet18, and the exper‑
iments with camera data on all ive instances of raw im‑
ages already achieved an overall accuracy of 75%. This
outperforms largely using only the last instance, indicat‑
ing that the transformer can effectively utilize the rela‑
tions between images sampled at different times to pre‑
dict the beams, though car user is not indicated in the im‑
age. We can also see that its performance is better than,
or similar to, most data preprocessing techniques, such as
brightness enhancement, segmentation, and background
masking, which further proves that themultimodal trans‑
former model can generalize to different data domains
without arbitrary processing. For example, its perfor‑
mance at unseen scenario 31 is close to the same day
scenario 32 nearly 70%, without any data augmentation.
Furthermore, we can see that it performs 10% better in
night scenarios 33 and 33, mainly due to the mobility of

tends the range of examples receiving a low loss.
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Table 1 – Distance‑based accuracy of beam prediction on multimodal test dataset

Data Type1 Scheme2 Overall Scenario 31 Scenario 32 Scenario 33 Scenario 34

Camera
Raw Image18 0.6535 0.5124 0.7457 0.7705 0.8137
Raw Image34 0.7548 0.6982 0.7160 0.8024 0.8494
5th instance34 0.6546 0.5171 0.7568 0.7548 0.8204

Brightness Enhancement34 0.7327 0.6853 0.7469 0.7371 0.8305
Background Masking34 0.7571 0.6896 0.7383 0.8157 0.8570
Image Segmentation34 0.6979 0.5873 0.7556 0.7824 0.8372
EMAModel Weights34 0.7146 0.6178 0.7642 0.7852 0.8402
Cross Entropy Loss34 0.7395 0.7018 0.7420 0.7410 0.8234

Radar Range ‑ Angle & Velocity34 0.2807 0.1840 0.2827 0.4429 0.3282
Range ‑ Angle & Velocity 18 0.3563 0.2936 0.3160 0.4800 0.3842

Range ‑ Angle18 0.3092 0.2462 0.1926 0.4686 0.3313

LiDAR Raw Point‑Cloud34 0.4362 0.3171 0.4037 0.6781 0.4636
Raw Point‑Cloud18 0.4422 0.3260 0.4272 0.6705 0.4707
FoV Calibration18 0.4223 0.2964 0.4370 0.6781 0.4310

Background Filtering18 0.2794 0.2598 0.2123 0.2986 0.3313

GPS Angle calibration 0.7425 0.6353 0.7704 0.8229 0.8906
Angle calibration +

distance on 2nd instance 0.6266 0.4718 0.6704 0.8481 0.7262

Multimodal
Images34 + Radar (Angle)18 0.6992 0.6304 0.6938 0.7533 0.8010
Images34 + Radar (Angle)34 0.7206 0.6378 0.7383 0.8033 0.8148
Images34 + Radar (Angle)18

+ Point‑Cloud18 0.6356 0.5049 0.7333 0.7519 0.7705

Images34 + Radar (Angle)34
+ Point‑Cloud34 0.7358 0.6649 0.7938 0.7919 0.8142

Images34 + GPS 0.7767 0.7253 0.8000 0.8038 0.8560
Images34 + GPS

(Image Augmentation) 0.7127 0.5764 0.7654 0.8576 0.8483

Images34 + GPS
(Flipping Augmentation) 0.7844 0.7298 0.7852 0.8462 0.8433

Best score on the leaderboard of the challenge3 0.7162 0.6536 0.7074 0.8576 0.712
1 Data modalities with all 5 (GPS 2) instances unless speci ied.
2 Data processing and model training schemes. Focal loss applied in all experiments unless speci ied.
3 Leaderboard: https://deepsense6g.net/ml-task-multimodal-beam-prediction
4 The superscript 18 indicates that ResNet18 is used for feature extraction, while 34 denotes the utilization of
ResNet34.

car lights in the images being easier to identify, than mul‑
tiple objectives appearing in the day scenarios.
In the performance of radar and LiDAR data, we can see
that the model achieves the lower accuracy than images,
and ResNet18 outperforms ResNet34 on encoding these
two data. This is because the radar signals and point
clouds received at the BS are re lected by all the mov‑
ing vehicles and objects, making the model hard to detect
the UE. Meanwhile, deeper residual layers lead to over it‑
ting issues. Moreover, the signal has coverage constraints,

causing issues in detecting UEs far away. Speci ically, for
the radar data, combining range‑angle and range‑velocity
performs 5% better, which validates that velocity infor‑
mation can help the transformer to predict the UE mo‑
bility and select the beam. For the LiDAR data, iltering
the background degrades the performance, because ref‑
erence information of the UE in the environment could be
cut out. This also explains that themodel with LiDAR per‑
forms better than radar which only contains information
about moving objects.
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In the performance of GPS data, angle calibration on the
irst two instances achieve the best accuracy in scenario
34 at 89%, which outperforms the distance and angle cal‑
ibration on the 2nd instance. This indicates that only two
instances of GPS data can predict the beam very effec‑
tively, reaching an accuracy of 74%which is very close to
using images. Our angle calibration scheme is very effec‑
tive while the distance information is less useful.
The best performance is achieved onmultimodal data us‑
ing images and GPS. It can be observed that the trans‑
former on these twomodalities produces an overall accu‑
racy of 77%, which is better than using them separately.
This is much more signi icant in the unseen scenario 31,
with 10% higher accuracy than using GPS only. This
proves the advantage of multimodal fusion on the feature
level of our transformer framework. The GPS informa‑
tion can assist the model to identify the UE in images,
which improves accuracy in day scenarios. The fusion
of images with radar and LiDAR data also largely outper‑
forms using them separately by 30% to 45%. Moreover,
when it comes to fusing images, employing ResNet34 for
encoding radar and LiDAR data yields considerable per‑
formance enhancements as compared to using ResNet18.
Furthermore, we also implement the data augmentation
techniques in scenario 31. It demonstrates that lipping
the images further enhances the performance, reaching
the best overall accuracy of 78% than all other schemes.
Finally, we compare our solution with the best score on
the leaderboard of the challenge, which uses convolu‑
tional autoencoders to fuse the images and GPS data [19].
It can be seen that our multimodal transformer achieves
7% better accuracy in overall performance and scenarios
31 and 32, and 13% better in scenario 34. This further
proves the effectiveness of this framework in solving the
beam prediction problem.

4.2 Model complexity
We investigate the complexity of our proposed frame‑
work from aspects of Multiply–Accumulate Operations
(MACs) and number of parameters (Params), and then
compare ours with the best solution on the leaderboard
of the challenge described in [19]. Note that the best so‑
lution of [19] utilized images, radar, and GPS data. Au‑
thors extract features from images by using CNN‑based
autoencoders. They get a threshold of radar heatmaps us‑
ing a 2D Constant False Alarm Rate (CFAR), and then ap‑
ply Density‑Based Spatial Clustering of Applications with
Noise (DBSCAN) to obtain the object angle. They also cal‑
ibrate GPS data in a similar way to ours. Finally, these
three pieces of preprocessed data are concatenated and
go through a densemodel to predict the best beam. Aswe
can’t get the detailed parameters or the code of CFAR and
DBSCAN in [19], we only calculate the MACs and Params
of the feature extraction and densemodel. For ourmodel,
we studied the main blocks in Fig. 6 with an input of ive‑
instance data and three of the best schemes in Table 1.
From Table 2, we observe that the MACs and Params of

Table 2 – MACs and Params

Source Block or Method MACs Params

Main blocks
in Fig. 6

(5 instances)

ResNet18 2,368,733,184 11,166,912

ResNet34 4,784,652,288 21,267,648

Transformer 1 127,221,760 400,000

Transformer 2 506,101,760 1,586,432

Transformer 3 2,018,836,480 6,318,592

Transformer 4 8,064,204,800 25,220,096

This paper
in Table 1

Overall best scheme
(Images34+GPS) 34,740,378,624 54,982,784

Best scheme of camera
data (5th instance34) 6,948,213,248 54, 982,272

Best scheme of GPS
data (Angle calibration) 41,472 41,920

In [19] Feature extraction 191,949,184 39,998,304

Dense model 303,616 304,704

ResNet34 are nearly double that of ResNet18. MACs and
Params of ‘Transformer 1’, ‘Transformer 2’, ‘Transformer
3’, and ‘Transformer 4’ increase quadruply. The most
complex block is the 4th transformer. Our overall best
scheme with transformers is the one that is most compu‑
tationally costly. However, when considering only the 5th
image, the scheme experiences a substantial reduction of
4
5 in terms of MACs and Params. On the other hand, the
best scheme solely relying on GPS is the simplest among
all the solutions. It is important to note that this scheme
demonstrates signi icantly lower complexity while deliv‑
ering superior performance compared to the best solu‑
tion presented in [19]. Therefore, our low‑complexity
scheme is suitable for scenarios with limited computa‑
tional resources, making it a viable option. On the other
hand, the high complexity scheme is best suited for sce‑
narios that demand high accuracy and possess abundant
computational resources.

5. CONCLUSIONS AND FUTUREWORK

In this paper, we present amultimodal transformer deep‑
learning solution for wireless communications and per‑
form a case study in mmWave beam prediction for a tar‑
get vehicle user. The transformer encoder is used to
learn abstracted relations between features of images,
point clouds, and radar signals at multiple time instances,
extracted by convolutional layers. Multiple layers of
transformers and ResNets are stacked to learn higher‑
level abstractions for downstream tasks. We employed
data transformation techniques of point cloud projec‑
tion, radar range‑angle, and range‑velocity FFT to convert
the multimodal data on 2D vector space, as well as GPS
calibration. Furthermore, we develop data processing

©International Telecommunication Union, 2023468

ITU Journal on Future and Evolving Technologies, Volume 4, Issue 3, September 2023



techniques to improve the task, including image bright‑
ness enhancement, segmentation, background masking,
LiDAR ield of view calibration, and background iltering.
We also proposed data augmentation to reduce over it‑
ting in training, including lipping the images. We trained
the model by applying focal loss and exponential moving
average techniques.
Experimental results show that our proposedmultimodal
transformer solution using image and GPS data achieves
the best distance‑based accuracy of predicted beams at
78.44%, with effective generalization to each of the sce‑
narios at 73%, 78.5%, 84.6%, 84.3%, respectively. This
outperforms signi icantly using LiDAR and radar, as well
as each single modality. Speci ically, the transformer ef‑
fectively utilizes GPS information to detect the target UE
in the images, whilst the images can assist GPS to gener‑
alize better in the unseen scenario. Furthermore, it also
performs 7% better than the best state‑of‑the‑art using
autoencoders. We can conclude that our proposed multi‑
modal transformer can effectively perform tasks between
visual and radio domains, and generalize to different sce‑
narios without customized data preprocessing and aug‑
mentation.
Further advanced deep learning models and techniques
areworth studying for improving performance, especially
feature extraction from data in other modalities. Domain
generalization is an important issue in this task because
the data in scenario 31 and the changed sampling rate
in the test dataset have a different distribution than the
training dataset. The Batchformer [20] algorithm is po‑
tentially ef icient in making the model robust to imbal‑
anceddata, by exploringdata sample relationships. More‑
over, semi‑supervised learning such as the FixMatch [21]
algorithm can improve the model on unlabeled data by
training on pseudo‑labels from evaluation con idences.
These methods are useful in practice with no additional
computing complexity.
The multimodal transformer framework can be utilized
to build a foundation model to empower multiple down‑
stream tasks in wireless communications. We can pre‑
train with self‑supervised learning to build a generative
model from sequences of images, LiDAR, radar, and radio
signals collected at different times, frequencies, and loca‑
tions, which learns high‑level abstractions and relations
among them. The transformer output can be stacked
with classi ication or regression layers and ine‑tuned for
downstream tasks related to this data, such as channel
prediction, beammanagement, andmodulation. The pre‑
trainedmodel can also be used on deviceswith fewer sen‑
sors and less computing power by adapting the model
branch and depth. It is a promising research direction to
investigate such architecture for foundationmodels in the
wireless communication domain.
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