
A FRAMEWORK FOR AUTOMATING ENVIRONMENTAL VULNERABILITY ANALYSIS OF
NETWORK SERVICES

Dimitris Koutras, Panayiotis Kotzanikolaou, Evangelos Paklatzis, Christos Grigoriadis, Christos Douligeris
Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou st, Piraeus, Greece

NOTE: Corresponding author: Dimitris Koutras, dkoutras@unipi.gr

Abstract – The primary objective of this paper is to introduce a comprehensive framework designed to automate the assess‑
ment of environmental vulnerability status of communication protocols and networked services, within operational contexts.
The proposed algorithm leverages the Common Vulnerability Scoring System version 3 (CVSS 3) metrics in conjunction with
network security data. The initial step involves the establishment of a network security ontology, which serves to model the
environmental attributes associated with the current security posture of communication protocol channels available within
an infrastructure. The process commences with the identiϔication and enumeration of all active communication services
through a combination of diverse information gathering tools. Subsequently, active network services undergo assessment us‑
ing a blend of passive scanning and active security analysis tools, which produce the environmental security score. This score
can be integrated into vulnerability scoring systems such as CVSS, facilitating the ϔine‑tuning of base CVSS scores, as well
as vulnerability mitigation in real‑world environments. To validate the proposed framework, we conducted testing across
various networks and communication protocols within a controlled environment, thereby offering tangible illustrations for
widely‑utilized communication protocols.

Keywords – Communication protocols, CVSS environmental score, network security ontology

1. INTRODUCTION

It is crucial to collect data regarding the implementation
and conϐiguration status of the active communication in‑
terfaceswhen searching for vulnerabilities in networks of
linkeddevices. By collecting and examining this data from
a security standpoint, implementation and conϐiguration
ϐlaws in protocols can be found early on and ϐixed. Given
that the expectation is that malicious actors will do an in‑
ventory of network resources as an initial phase of their
cyberattack planning, before initiating attacks on real ser‑
vices or data, network administrators must act quickly to
identify and ϐix these vulnerabilities before they have the
potential to become exploitable weaknesses. The process
of enumeration, in the context of cybersecurity, involves
the systematic probing and identiϐication of network re‑
sources, including devices, services, and potential entry
points. This reconnaissance phase often precedes a full‑
scale cyberattack, serving as an essential initial step for
threat actors to understand the target environment.

Using network vulnerability scanning tools is one tech‑
nique to obtain data on the current state of network vul‑
nerabilities. The gathered data can then be used to evalu‑
ate hownetwork security environmental datamay impact
the underlying software vulnerabilities using vulnerabil‑
ity scoring systems(CVSS) [1], like the standard vulner‑
ability scoring system [2]. CVSS computes vulnerability
scores using sets of metrics. Vulnerability attributes that
remain consistent over time and across various environ‑
ments and implementations are knownasbase scoremet‑
rics. Environmentalmetrics, which include things like the

frequency of a target inside an organization, are imple‑
mentation and organization‑speciϐic vulnerability traits
[3].

1.1 Motivation and research questions
Identifying and proactively addressing vulnerabilities
that can occur in a network is crucial for several reasons.
From the perspective of preventative security, detecting
and remediating vulnerabilities early minimises the win‑
dow of opportunity for malicious actors. By addressing
weaknesses in the network’s defences before they can be
exploited, administrators can strengthen the overall se‑
curity posture [4]. Correcting vulnerabilities at an early
stage reduces the risk of data breaches, system compro‑
mises, and other security incidents. This proactive ap‑
proach helps prevent potential damage to critical systems
and sensitive data. Efϐiciently resolving vulnerabilities
can reduce the resources, both in terms of time and ef‑
fort, required to recover froma cyberattack. It is often less
costly to address weaknesses before they are exploited
than dealing with the aftermath of a successful attack.
Maintaining a secure network environment is essential
for upholding the trust of customers, partners, and stake‑
holders. Breaches resulting from unaddressed vulnera‑
bilities can erode trust and damage an organization’s rep‑
utation.

To identify the true vulnerabilities of network services
and communication protocols in real‑world operating
settings, a variety of vulnerability scanning and conϐig‑
uration management tools and approaches are available

© International Telecommunication Union, 2024 
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 

ITU Journal on Future and Evolving ITU Journal on Future and Evolving Technologies, Technologies, Volume 5, Issue 1, March 2024Volume 5, Issue 1, March 2024



in the literature. Unfortunately, there aren’t many auto‑
mated methods available that can automatically express
the vulnerabilities found in a widely‑used environmen‑
tal vulnerability score, such as the environmental score
model provided by CVSS [1]. Automating the gathering
and evaluation of such environmental‑speciϐic data is our
primary objective. Within this framework, we pose a
number of queries that come up during the primary pro‑
cedure of gathering and sifting network data. How can
we accurately characterize the security statuses of net‑
works through the process of modeling the network en‑
vironment and systematically gathering relevant input?
While there are security ontologies in the literature, such
as those found in [2] and [5], they are not quite appro‑
priate for our purposes. Furthermore, for the purpose of
acquiring network environmental information, a new on‑
tology must be designed.

Another research question is how to use the network en‑
vironment and security states speciϐied earlier to auto‑
matically modify the base score of the vulnerabilities of
network services to produce a more accurate environ‑
mental vulnerability score. Since there are various net‑
work vulnerability scanning methods available, convert‑
ing the pertinent vulnerabilities from CVSS base scores to
environmental ratings typically requires human interven‑
tion, professional guidance, and a lot of time. Even though
automated analysis cannot replace experienced security
analysis, it could nevertheless behelpful in identifying po‑
tentially dangerous environmental network vulnerabili‑
ties early on.

1.2 Contribution
This paper presents a proof of concept implementation
of a framework designed to automate the environmental
score evaluation process for network‑exposed services.
Our primary objective is to automate the CVSS score for
environmental vulnerability, taking into account the in‑
terrelationships between the systems being evaluated as
well as the unique features of the underlying network
topology. We ϐirst build a network security ontology in
order to accomplish this.

We have created a bespoke tool to automate the collection
of the necessary data as speciϐied in our ontology. The
tool is created in two bricks. The ϐirst brick, functional‑
ity, GORAT is used to construct a comprehensive map of
the network and to discern the interconnections between
various devices within the network infrastructure., net‑
work components, software, network security policies,
and users by automating the enumeration of local net‑
works and systems based on network implants.

The second functionality, Aness, takes as input the infor‑
mationproducedbyGORAT and elicits automatednetwork
environmental security score production, for all the base
score of the vulnerabilities related with each active net‑
work service. Toachieve this, Aness implementsprotocol‑

speciϔic rules, which aggregate the ϐindings from security
testing, both active and passive, associatedwith each spe‑
ciϐic communication protocol. We have built the protocol‑
speciϐic logic for three common application‑layer proto‑
cols (http, smtp, and ftp) in order to validate the sug‑
gested framework.

The integrationofGORATwith theAPI represents a signif‑
icant new addition to this version of the tool. The princi‑
pal novelty lies in the algorithm, namely themethodology
described herein. Additionally, it’s worth noting that this
tool is designed for administrative use, employing tech‑
niques that mimic those of an attacker during its opera‑
tion. For each protocol, the tool performs a scan for open
ports, mimicking the approach of a potential attacker. If it
does not detect any notable vulnerabilities, it cannot pro‑
ceed further.

1.3 Paper structure
In Section 2 we review related work and in Section 3 we
describe the proposedmodel for automated environmen‑
tal network security evaluation. In Section 4 we describe
how the proposed model was implemented while in Sec‑
tion 5 we validate our model by presenting results on
known protocols. Finally, Section 6 concludes this paper.

2. RELATEDWORK

2.1 Security ontologies
Numerous viewpoints on ontologies that handle security
concepts like risk, threats, vulnerabilities, and security
measures may be found in the literature [6]. For exam‑
ple, [7] describes the factors that could lead to a threat in
their taxonomy of security threats. However, [8] suggests
a classiϐication that includes actors, attacks, and assets.
In closer alignment with our methodology, [5] suggests
an ontology focused on network security to capture fea‑
tures of network security. A malware‑based ontology for
a security domain is proposed by [9]. Additionally, they
divided the process into concepts according to network
possibilities and roles. Furthermore, [10] describe a se‑
curity domain ontology‑based device.

An ontology that aims to link metrics like vulnerability,
product, and attacker with the Common Platform Enu‑
meration (CPE) model and CVSS 2 is presented in [11].
In this paper, authors employ the CVSS system to access
application layer protocols like xcap and http [12]. In a
similar vein, [13] analyzes a system’s key network assets
using the CVSS model. The [2] model records compatible
CVEs by utilizing the link between attacks, devices, and
vulnerabilities.

In the literature, there exist several security ontologies
that model the information data obtained from network
security system logs. For instance, [14] looks at data
from Intrusion Detection System (IDS) logs in an attempt

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

105



to identify risk indicators and analyze the security risk.
Furthermore, the authors [15] employ generic (like loca‑
tion) and securitymetadata (like certiϐications and access
control measures) for their ontology data, in addition to
timestamps and IDS logs. Lastly, additional approaches
concentrate on data collection for cyber‑physical systems
[16].

2.2 Network mapping/scanning methodolo‑
gies

An additional helpful source of information for populat‑
ing a network security ontology is network mapping and
scanning technologies. The primary information source
will be the network itself. Attempting to map the sys‑
tems and network services inside the evaluated perime‑
ter and deϐine the network’s scope is the ϐirst stage.
There are various kinds of scans, including open, partly
open, stealth, sweep, and miscellaneous, according to
[17]. Thus, the writers categorize cyber‑scanning by out‑
lining its traits, strategies, and techniques. Furthermore,
[18] offer an approach for mapping Internet of Things
networks. Moreover, scanning can be done at the device
level, for example, using the syn and ack signals [19]. Sev‑
eralwriters haveutilizedNmapandother similar tools for
host and port scanning [20], [21].

We also employ tools such as Nmap, not for the pur‑
pose of extracting vulnerabilities, but rather to detect and
monitor potential incidentswithin the communication in‑
teractions between various systems and devices utiliz‑
ing protocols from the 802.11 family [22]. Balsam et
al. [23] conducted a study using the National Vulnera‑
bility Database, a public vulnerability database, to corre‑
late the data provided by the fundamental and temporal
components of the CVSS 3.x vector. They also use Python
scripts to generate histograms based on data extracted
from the databases. The outcomes of this analysis re‑
veal an over‑representation of certain numerical values
(low(1), high(3) etc.) in the base scores calculated using
CVSS v3.x when juxtaposedwith the corresponding count
of available exploits.

On the other hand, Vasilyev et al. [24] use CVSS metrics
by putting the corresponding assets they have captured
within a cyberattack vector model for speciϐic systems.
We note that they do not extract the score (via variables)
as in our case, and they just simply use it. Walkowski et al.
[25] clearly focus on a study of the metrics that can affect
the base score over the past of time. They study also how
some instances can strongly affect the base score. An in‑
teresting fact is that Amankwah et al. [26] maintain that
the effectiveness of the CVSS metric, however, has been
questioned in earlier studies, giving rise to a variety of
vulnerability score metrics.

To identify vulnerabilities in web applications with
heightened susceptibility, various studies, including

those referenced in Sang et al. [27], advocate for the use
of automated frameworks. These frameworks are specif‑
ically designed to assess the severity of vulnerabilities
detected by open‑source web scanners. A key aspect of
these studies is the adoption of the OWASP 2017 Top Ten
as a benchmark, which provides a standardized metric
and prioritization scheme for evaluating the severity of
identiϐied vulnerabilities.
To uncover a diverse range of security vulnerabilities
within these vulnerable datasets, data from the National
Vulnerability Database (NVD) by NIST and the Software
Assurance Reference Dataset (SARD) were employed as
foundational learning materials. This approach under‑
scores the framework’s focus on detecting vulnerabilities
directly within software code, as opposed to those found
in services and protocols. By leveraging these compre‑
hensive datasets, the framework enhances its capability
to pinpoint and analyze software vulnerabilities in amore
targeted and effective manner.

2.2.1 Comparison with our preliminary work
The primary limitation of the previous framework, as de‑
tailed in Koutras et al. [28], did not stem from its algo‑
rithmic design but rather from its operational efϐiciency
and the technological stack employed from an architec‑
tural perspective. To enhance the performance in the
updated version, we initially adopted the Go program‑
ming language, known for its efϐiciency and speed. Subse‑
quently, we integrated an API to facilitate the connection
between the legacy application and the NIST API, ensur‑
ing seamless data exchange and interoperability. Further
augmenting our system’s efϐiciency, we developed amore
advanced and rapid client‑server communication applica‑
tion using Go. It is important to note that while making
these enhancements, we have retained the core logic of
the initial framework, ensuring continuity in functional‑
ity and design philosophy.

2.3 Vulnerability detection tools
In this subsection, we delve into an analysis of existing
research and advancements in the ϐield of vulnerability
detection. In [29], the authors delve into contemporary
application‑independent slow Denial of Service (DoS) at‑
tacks. They introduce two new attackmodels, Slowcomm
and Slow Next, along with a simulation tool for attack ex‑
ecution. The tool was utilized to assess the vulnerabil‑
ity of various Internet services, including HTTP, FTP, and
SSH servers. The paper also outlines speciϐic attack signa‑
tures and detection strategies. In [30], the authors focus
on the the identiϐication of the application layer protocol,
with a task essential for enabling protocol‑speciϐic deep
packet inspection. The research acknowledges the com‑
plexity of this task, noting that traditionalmethods like re‑
lying on port numbers are insufϐicient for accurate proto‑
col identiϐication. The study conducts a detailed analysis
of Dynamic Protocol Detectionmechanisms used in popu‑

©International Telecommunication Union, 2024106

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024



lar open‑source networkmonitoring tools, using HTTP as
a case study. Van‑Thuan et al. in [31] present AFLNET, a
graybox fuzzer designed for testing protocol implemen‑
tations. It adopts a mutational approach and leverages
state‑feedback to enhance the fuzzing process. It starts
with a corpus of actual message exchanges between a
server and a client. AFLNET functions as a client, replay‑
ing and modifying the original message sequence sent to
the server, focusing on variations that improve code or
state space coverage. It identiϐies the server states af‑
fected by amessage sequence using the server’s response
codes. This feedback allows AFLNET to pinpoint and tar‑
get progressive regions within the state space.

2.4 Vulnerability databases
Various vulnerability databases exist in the literature,
that maintain information about vulnerabilities, includ‑
ing details about the affected systems, severity ratings,
and recommendedmitigation or patch information. Some
of the most widely‑used vulnerability databases and
sources include:

• The National Vulnerability Database (NVD)1 is main‑
tained by the National Institute of Standards and
Technology (NIST) in the United States. It is a com‑
prehensive and authoritative source of information
about security vulnerabilities. NVD provides de‑
tailed vulnerability descriptions, Common Vulnera‑
bility Scoring System (CVSS) scores and references to
related security advisories and patches.

• CommonVulnerabilities andExposures (CVE)2, func‑
tions as a registry of standardized names, known as
CVE identiϐiers, for publicly‑disclosed cybersecurity
vulnerabilities. While it doesn’t offer in‑depth details
about these vulnerabilities, its primary role is to es‑
tablish a consistent way of identifying and referenc‑
ing them. More comprehensive databases typically
connect CVE IDs to detailed vulnerability informa‑
tion.

• The Common Weakness Enumeration (CWE)3 is a
collaborative effort to compile a catalog of weak‑
nesses found in software and hardware. It serves as
a universal language for recognizing, addressing, and
averting vulnerabilities. While it doesn’t function as
a direct repository of vulnerabilities, it aids in com‑
prehending the sorts of ϐlaws that can ultimately re‑
sult in vulnerabilities.

• Exploit Database (Exploit‑DB): Exploit‑DB is a
widely‑used resource for security professionals
and researchers. It contains a collection of exploits
and vulnerabilities. While it’s not a comprehensive

1https://www.nist.gov/programs‑projects/national‑vulnerability‑
database‑nvd

2https://cve.mitre.org/
3https://cwe.mitre.org

Fig. 1 – Network security ontology

database of all vulnerabilities, it can be useful for
researching known exploits.

• The OSV4 schema provides a human and machine‑
readable data format to describe vulnerabilities in a
way that preciselymaps to open‑source package ver‑
sions or commit hashes.

• CVEDetails5 is awebsite that provides detailed infor‑
mation on vulnerabilities, including CVE IDs, sever‑
ity, affected products, and related references.

• GitHub’s Security Advisories database6 includes in‑
formation on vulnerabilities in open‑source software
hosted on GitHub. It provides details and links to rel‑
evant security patches and advisories.

3. SYSTEM ARCHITECTURE
Initially, we introduce the suggested security ontology,
which attempts to deϐine the data gathering associated
with network security level. Next, we will introduce the
suggested algorithm for automating the evaluation of ac‑
tive network connections’ environmental security.

3.1 Network security ontology

Determining which data is pertinent to the security level
of network services, ports, and communication channels
is a necessary step in designing an automated framework
for evaluating the environmental network security levels
[9, 6].

The goal of the proposed ontology, is to identify and cor‑
relate data that is related to the environmental vulnera‑
bility level of network services. This is achieved via the
deϐinition of abstract entities that affect the level of vul‑
nerability of network services, along with their relation‑
ships. Fig. 1 illustrates the proposed network security
ontology. More speciϐically, the system is the core entity
around which all others are grouped. According to our
ontology, the system entity is related to entities that con‑
tain information about the system’s security state, such as
4https://osv.dev/
5https://www.cvedetails.com/
6https://github.com/github/advisory‑database

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

107

https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://cve.mitre.org/
https://cwe.mitre.org
https://osv.dev/
https://www.cvedetails.com/
https://github.com/github/advisory-database


system logs and relevant ϔirewall/IDS rules, which in turn
are information accessible via local access, and therefore
are related to the local (attack) vector. The system also
contains services, which in turn consist of software and
network interfaces. The network interface is used to in‑
stantiate a network protocol and is accessible by the local
and adjacent network vectors. As far as the environmental
score is concerned, it is inϐluenced by the protocol entity
and all the entities connected to it, in order to ultimately
evaluate the environmental vulnerability score of the core
entity under examinations, i.e. the system entity.

In our model system, a computing system with a unique
network address that operates within a network and pro‑
vides various network services is described as an entity.
To provide services to remote users and systems, each
network service may employ a network interface, which
in turn implements a network protocol. Consider an ftp
server (the system) with a unique IP address that offers
ϐile sharing (the service) from a speciϐic network inter‑
face (port) by implementing the ftp protocol. Our ontol‑
ogy will represent all network connections as vectors of
the form [system,service,IP,port,protocol] and will assign
each network link a network environmental score.

Since softwaremust be installed andoperatedon comput‑
ers in order for network services and protocol implemen‑
tations to function, implementation vulnerabilities are
crucial data to gather when assessing the security of net‑
work connections. Vulnerabilities are classiϐied into three
primary categories according to the CVSS model [1, 12] :
base score, temporal score, and environmental score. The
software used to provide network services and protocols
will process both the base and the temporal score. For
every network connection that is active on a system, the
environmental score will be speciϐied as follows.

The accessibility information is deϐined for each potential
access vector to a network interface since network ser‑
vices can be accessed via local access, neighboring net‑
work access, or remote network access. Each vector col‑
lects data on an interface’s accessibility, whether locally
or remotely. This includes the entity (process, user, IP,
etc.) that is gaining access to the network interface, the
time of access, and other associated details. Such data is
derived from informationaboutnetwork security devices,
including ϐirewalls and intrusion detection systems, that
specify access rules.

3.2 Environmental network security assess‑
ment

The automated environmental network security assess‑
ment is described in Algorithm 1. The proposed algo‑
rithm is implemented through concrete functions, while
the correlation of the information is based on the rela‑
tions of the network security ontology presented in Fig. 1.
All of the links, deϐinitions, and resources listed in the on‑

Algorithm 1: Produces environmental score for
protocols and assets per system, per network from
{𝒯}.
Input : 𝒯=Target ip range. 𝒫=Available protocols.
Output: 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑𝑁𝑒𝑡𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒[] = A set of lists

containing the environmental score of the
subnetwork.

1 Algorithm EnvScoreProduction()
2 𝑠[] ← NetworkScanning(𝒯)

/* s[] is the list of vectors
s[i]=(system,service,IP,port,protocol)
representing network connections. */

3 𝐹𝐼[] ← NetworkRulesEnumeration(𝑠[])
// FI[] is the exported firewall-IDS

rule-set from the network.
4 𝑖 ← 1
5 while 𝑠[𝑖] ← hasNext(𝑠[])
6 do
7 𝑆𝑉 [𝑖] ←

NetworkConnectionsEnummeration(𝑠[𝑖])
// SV[] lists network software running
in each examined system.

8 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑠𝑡𝑎𝑡𝑒[𝑖] ←
PassiveSecurityTesting(𝑠[𝑖], 𝑆𝑉 [𝑖], 𝐹𝐼, 𝒫)

// Security info retrieved through
protocol-specific passive scanning
tools.

9 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑠𝑡𝑎𝑡𝑒[𝑖] ←
ActiveSecurityTesting(𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑠𝑡𝑎𝑡𝑒[𝑖],
𝑠[𝑖], 𝑆𝑉 [𝑖], 𝐹𝐼, 𝒫)

// Active and protocol-specific
security testing.

10 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒[𝑖] ←
EnvScoreProduction(𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑠𝑡𝑎𝑡𝑒[𝑖],
𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑠𝑡𝑎𝑡𝑒[𝑖])

// Evaluation of environmental
security score per network interface.

11 end
12 return 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒[𝑖]

tology are used by the algorithm. The research questions
that are addressed by the presented algorithm execution
are the following:

• Q1: What data are we using as input to deϐine the
scope of the analysis?

• Q2: Which data relations are important to identify
during the process?

• Q3: In which way can the security testing affect the
resulting output?

We must ϐirst deϐine the network that is being stud‑
ied in order to respond to the aforementioned queries.
Furthermore, for every unique network service in‑
terface, we must specify the relationships between
hardware, software, and services that carry out a
network protocol (i.e. deϐine vectors of the form
[system,service,IP,port,protocol]). Next, wemust
do both passive security scans and active security tests to

©International Telecommunication Union, 2024108

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024



determine the environmental security level of each net‑
work service that has been identiϐied.

The functionality of the suggested algorithm is organized
around six different functions, which fall into twoprimary
categories. The ϐirst stage, which is carried out by the ϐirst
three functions, is protocol agnostic and consists mostly
of creating the list of network interfaces designated for
assessment.

3.2.1 Phase 1. Enumeration of the examined
network services

The following phase, which is driven by the ϐinal three
functions, adopts a character peculiar to the protocol.
During this stage, every function modiϐies its function‑
ing according to the recognized protocols, thereby carry‑
ing out security testing—both passive and active—that is
customized for the particular protocol under considera‑
tion. These tasks ultimately result in the evaluation of the
highest level of environmental security for every single
network interface.

Based on the terms deϐined in our ontology (Fig. 1), Al‑
gorithm 1 analyzes the systems located in the network to
produce services, and link these services provided by net‑
work interfaces with the software that they use.

The following functions are utilized:

• NetworkScanning ‑ The group of the network ad‑
dresses of the network under examination, as
well as details about the subnetworks, are en‑
tered into this function. In order to be han‑
dled later by the other functions, it returns a
list of network vectors with a speciϐied structure
([system,service,IP,port,protocol]).

• NetworkRulesEnumeration ‑ Theprimaryobjective of
the secondary function is to retrieve security data
about the network (such as ϐirewall and intrusion de‑
tection system rules) from a local standpoint. We’ll
be using a proprietary instance of our tool, GORAT
(covered in Section 4.1), to collect data locally and
set up network implants on different systems. Our
current objective is to locate ϐirewall and/or IDS
rules associated with the analyzed network connec‑
tions, while more intricate analysis, including rules‑
ϐile parsing, may be speciϐied in the future.

• NetworkConnectionsEnumeration ‑ This function’s
main goal is to produce thorough software‑related
information. It is driven by inputs such as the list
of supported protocols and the current inventory of
network vectors. As per the requirements speciϐied
in our ontology, this function is intended to method‑
ically list important software details, such as version
information, that are speciϐic to the software that is
being used in relation to the pertinent protocols and
services.

3.2.2 Phase 2. Environmental security assess‑
ment of network services

As previously said, each protocol under examination calls
for a particular implementation during this step. First
passive security information collecting is carried out for
each supported protocol in order to establish an initial
security state. After that, active security testing is used
to update the initial security state based on validated as‑
saults, depending on a list of supported active attacks.
Naturally, depending on the particular context, it’s likely
that someattacks andvulnerabilitieswon’t be veriϐied, for
instance because of network or system hardening.

In our algorithm 𝒫 denotes the list of supported proto‑
cols.

• PassiveSecurityTesting ‑ Depending on the par‑
ticular protocol used by a network interface or
service under investigation, this function con‑
sists of a combination of passive information
security gathering tools (i.e. for each vector
[system,service,IP,port,protocol]). The
function handles the network service’s initial
security state. Observe that our study groups vul‑
nerabilities at the network connection level rather
than the device level, in contrast to previous studies
like [32] and [33].

• ActiveSecurityTesting ‑ This function is intended to
carry out a wide range of automated active security
tests, each speciϐically customized for the protocol
that is being examined. Its goal is to produce a re‑
sult that is superior to the basic score in terms of se‑
curity posture reϐinement and enhancement. This is
accomplished by carefully evaluating vulnerabilities
in order to conϐirmor refute any presumptions about
security ϐlaws in the network environment. As a re‑
sult, the output produced by this function goes be‑
yond the ϐirst hypotheses and provides a more accu‑
rate and up‑to‑date picture of the security situation.
Compared to the base score, the updated and more
correct security state is the outcome, since the pre‑
sumed vulnerabilities might be veriϐied or rejected.

• EnvScoreProduction ‑ Finally, this function takes
as input the initial_security_state and the up‑
dated_security_state which are the results of the
two previous functions respectively. Its scope is the
environmental score production according to the
CVSS model. We established a few security guide‑
lines, primarily based on NIST publications [34, 35,
36]. The types of attacks that are investigated in
each network service protocol serve as ϐilters to
evaluate the security data in order to compute the
environmental score.

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

109



Fig. 2 – Client‑Server architecture

4. IMPLEMENTATION
We have designed a proof of concept implementation of
the proposed framework presented in Algorithm 1. The
framework that has been created consists of two differ‑
ent deployments. These instantiations are directly linked
to each other in order to compose the basic framework.
This custom tool‑framework was developed in GoLang in
order to implement the two phases described in Section
3.2.

4.1 Implementing network and system enu‑
meration

GORAT, developed in Go, implements the ϐirst phase and
the relevant functions NetworkScanning(), NetworkRule‑
sEnumeration() and the NetworkConnectionsEnummer‑
ation() from the local vector scope. It follows the Client‑
Server network architecture (see Fig. 2).

In GORAT, each node is equippedwith an implant that can
establish a connection with the control server. This con‑
trol server has the capability to instruct these implants to
perform speciϐic tasks and gather responses from them.
For each unique IP and port combination, the control
server can identify the software running on the system,
allowing it to compile a detailed list of network interfaces
and services. This information is structured as a vector
with the following format: [system, service, IP, port, pro‑
tocol], as illustrated in Fig. 2.

Communication between the control center and the im‑
plants is facilitated through gRPC channels. When an im‑
plant initiates a gRPC channel, it essentially establishes
an HTTP/2 connection to the control server. This chan‑
nel can then be reused for sending multiple remote com‑
mands to the server.

GORAT offers three key functionalities:

• OS command execution: It allows the execution of
operating system commands.

Fig. 3 – Multiple implants architecture

• Concurrent control: GORAT can concurrently man‑
age multiple implants (see Fig. 3).

• Information gathering: It collects information
through shell commands and operating system
queries.

Each implant generates a unique identiϐier to register
with the control server. During the connection setup,
the implant shares user and device system information
with the control server. The user information includes
the username, user ID, home directory, and user shell,
while device information comprises the hostname, oper‑
ating system, kernel version, architecture, IP address, and
more.

4.2 Implementing protocol security assess‑
ment

Automated Network Environmental Security Scoring
(Aness)7 implements the second phase of the proposed
framework, and the relevant functions of PassiveSecuri‑
tyTesting(), ActiveSecurityTesting() and EnvScoreProduc‑
tion().

Our proof‑of‑concept solution presently supports the
automated environmental security evaluation for three
widely‑used application layer protocols: http/https, ftp,
and smtp. This is because the second step is protocol‑
speciϐic. A comprehensive list of communication proto‑
cols from all layers might be included in the list[37].

Aness evaluates the environmental vulnerability level of
all software associated with a network service under in‑
vestigation using a combination of open‑source security
tools and its own unique tools. It is mostly written in Go
and depends on bash scripting for interaction. Aness’s
general functionality is seen in Fig. 4.

The vectors of the network services iden‑
tiϐied in the previous phase, in the format
[system,service,IP,port,protocol], are inputted.
Using Nmap and a bespoke port scanner written in
Go, it ϐirst conducts a thorough enumeration for each
7https://github.com/vpaklatzis/Aness‑go

©International Telecommunication Union, 2024110

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

https://github.com/vpaklatzis/Aness-go


Fig. 4 – Aness architecture and workϐlow

network service that has been detected. The result of
this operation is a structured text ϐile that is parsed to
produce the name and software version that has to be
tested.

Using the name and version generated by the thorough
enumeration phase as parameters, the tool does an au‑
tomated online search at the NIST National Vulnerability
Database 8 for the passive scan. The program makes use
of the NIST’s ofϐicial API. A list of all the CVEs linked to the
network service and protocol under investigation is the
output. Every CVE immediately extracts the base score
CVSS vector from the online NVD database and saves it in
a local list.

Then, according to the tested communication protocol, it
triggers various open‑sourceactive security analysis tools
to test for known security attacks (e.g. for httpsNmapand
sslyze are used among others). The result of the active
security tests is a matrix having as an output a boolean
value indicating the success or failure of each examined
attack (i.e, the attack validation table shown in Fig. 4).

The program uses a set of dictionaries for each security
attack to process the results of the tests. These dictionar‑
ies explain how each attack impacts the environmental
CVE score of each vulnerability in a piece of software that
is used by the particular protocol and network service
that is being examined. This is the tool’s main, protocol‑
speciϐic component. The dictionaries for each supported
protocol have been created by reviewing each assault and
documenting its impact. The environmental attack vec‑
tor attribute of the applicable CVE is set to ‘L’ (local) if,
for instance, an attack initiated from a remote network
fails but succeeds when executed from a local network.
In the same way, if a DoS attack can be successfully exe‑

8https://nvd.nist.gov/

cuted then the availability impact is set to ‘H’ (high). In
case where more than one attacks are available, the ϐinal
output for each metric is the maximum (worst‑case) re‑
sult veriϐied in any of the attacks (4).

The impact mentioned in this methodology relates to
how the program assesses and adjusts the environmental
score of Common Vulnerabilities and Exposures (CVEs)
based on the outcome of security attacks tested against
speciϐic software protocols and network services. This
impact is manifested in several key areas:

• Adjustment of CVE scores based on attack context:
The program modiϐies the environmental score of
each CVE in a targeted piece of software. This score
is adjusted based on how each type of security attack
affects the software when used with speciϐic proto‑
cols and network services.

• Protocol‑speciϐic assessment: The tool employs
protocol‑speciϐic dictionaries, which are tailored to
evaluate the impact of various attacks on different
network protocols. This speciϐicity allows for amore
accurate and relevant assessment of vulnerabilities
in diverse network environments.

• Dynamic assessment of attack impact: The environ‑
mental attack vector attribute of a CVE is dynami‑
cally altered based on the attack’s success or failure
in different scenarios. For example, if an attack fails
remotely but succeeds locally, the environmental at‑
tack vector is set to ’L’ (local). This dynamic assess‑
ment provides a nuanced understanding of the vul‑
nerability’s context and potential exploitation meth‑
ods.

• Evaluation of different types of attacks: The tool can
assess a variety of attack types, such as Denial of Ser‑
vice (DoS) attacks. If a DoS attack is successful, the

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

111

https://nvd.nist.gov/


availability impact of the CVE is set to ’H’ (high), in‑
dicating a signiϐicant risk to the system’s availability.

• Worst‑case scenario analysis: In situations where
multiple attacks are possible, the program deter‑
mines the ϐinal output for each metric by consider‑
ing the maximum (or worst‑case) result veriϐied in
any of the attacks. This approach ensures that the
assessment reϐlects the highest potential risk associ‑
ated with each CVE.

Below we describe the logic implemented for each of the
currently supported protocols, while Table 1 summarizes
the effect on the impact metrics assigned to each attack.
The values presented in the table are based on the infor‑
mation thatmalicious actorsmay reveal, in relation to the
documented vulnerabilities of the system and the exam‑
ined attacks for each protocol.

Finally, the environmental score and severity are calcu‑
lated by manipulating the CVE vectors of the online CVSS
calculator 9 and scraping the data through the API. The
result is the the ofϐicial environmental score of the exam‑
ined system software assets. Also it is worth mentioning
that the tool can support all the current versions of the
CVSS metrics (version 3.x, version 2).

Table 1 – CIA vector metrics per threat

SMTP FTP HTTP
StrangePort OpenRelay Enum Anon Bounce FireWall No/Weak

TLS version
Invalid Cert

Chain RefererChecker
C H N L L L N H H L
I H H N L L H H H L
A L H N L L H H L N

4.2.1 Examined smtp attacks
The vulnerability against known smtp attacks such as
strange smtp port, open‑relay [38] and smtp user enu‑
meration is automatically tested.Every attack’s effect is
correlated with the possible harm it could do. Since a
successful weird port attack suggests that there may be
a backdoor SMTP service operating on top of the ofϐi‑
cial service, conϐidentiality and integrity are likely to be
severely impacted.

Since it permits unauthorized usage of the service, a suc‑
cessful open relay attack will have a signiϐicant effect on
availability and integrity. It may also be utilized in con‑
junction with denial of service attacks. Lastly, ftp user
enumeration is thought to be the least successful method
because it does not result in direct exploitation, which di‑
minishes its impact.

4.2.2 Examined ftp attacks
For the ftp connections, Aness automatically tests known
ftp attacks, including the bounce attack, ϐirewall bypass‑
ing (a vulnerability in netϐilter andother ϐirewalls that use
helpers to dynamically open ports for protocols such as
ftp and sip) and the ftp anonymous login [39].
9https://nvd.nist.gov/vuln‑metrics/cvss/v3‑calculator

Once more, the tested attacks are mapped to each at‑
tack’s possible impact. For instance, because they need
extra steps to be successful, the anonymous FTP login and
bounce attacks are given a low inϐluence on all impact
metrics. A successful ϐirewall bypass assault, however,
will have a signiϐicant effect. However, keep in mind that
this attack needs access to a neighboring network.

4.2.3 Examined http attacks
We verify the existence and version of the underlying
TLS protocol, the application of known attacks, and the
server certiϐicate status (algorithm strength, certiϐicate
chain validation, veriϐication of other known http attacks
like referer chacking etc.) for http interfaces. Numerous
open‑source programs are called, including sslyze, Nmap,
and sslscan.

4.3 Aness tool architecture
The ’Aness API’ is used as a functionality inside the tool,
together with the GORAT as some can see in the Fig.
(5). Within the architecture, GORAT is seamlessly in‑
tegrated into the framework and works in conjunction
with the API known as ’Annes API’. Annes API acts as the
outer layer that communicateswith external components,
while GORAT operates within this framework, providing
critical functionality.

Annesworks as a standardHTTP/1.1 API, developedwith
GoLang and further optimizedwith the powerful Ginmid‑
dleware. This combination allows Annes to act as a con‑
currentweb server, capable of handlingmultiple client re‑
quests simultaneously.

What really makes this system unique is GORAT. GORAT
works within Annes and greatly enhances its capabilities.
GORAT is designed to work with goroutines, which are
essentially lightweight, independent threads that execute
tasks concurrently. These goroutines are highly efϐicient
and resource‑friendly, making them far superior to tra‑
ditional OS threads used in languages such as C#, Java,
Python and others.

The collaboration between Annes and GORAT ensures
that the system can efϐiciently manage concurrent tasks
and client requests while maintaining remarkable speed
and resource efϐiciency. GORAT handles the complex
tasks behind the scenes, using the power of goroutines,
while Annes manages the interactions with external ele‑
ments.

In essence, Annes acts as the interface and communica‑
tion layer, while GORAT’s goroutines provide the under‑
lying power and efϐiciency that make this architecture ex‑
ceptional. Together they create a robust and powerful
system capable of seamlessly serving multiple applica‑
tions.

In summary, the system represents a signiϐicant leap in

©International Telecommunication Union, 2024112

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator


efϐiciency compared to its predecessor [28]. It boasts a
remarkable speed increase, performing tasks 2 to 3 times
faster. For instance, what used to take 4 to 5minutes now
only requires 1 to 2 minutes to complete. Furthermore, it
has proven to be considerably more reliable, consistently
delivering accurate and dependable results.

5. VALIDATION
In order to validate our framework we followed two dif‑
ferent approaches. First, we createda fully controlled cus‑
tom environment, as shown in Fig. 6. The main purpose
is to check that the internal processes contained in the
source code of our tool work as expected. Since theweak‑
nesses of these services are already known in advance,
we have the advantage of preemptive insight, allowing us
to strategically address andmitigate these vulnerabilities
more effectively. Secondly, we run the Aness tool on a
known topology, since it is an administrative tool, but on
a server with unknown services. The goal here is to test
the effectiveness of the tool in a real environment.

5.1 Validation through customized tested
topology

To rigorously validate and assess the efϐicacy of our pro‑
posed framework, a structured approach was under‑
taken, necessitating the establishment of a dedicated test
network environment. This controlled testbed served
as a controlled, representative model of real‑world op‑
erational settings, enabling the evaluation of our frame‑
work’s capabilities under simulated conditions. As shown
in Fig. 6 it involves typical services, including the network
communication protocols supported by Aness, namely
smtp, ftp and http.

Initially Aness is installed with implants (GORAT func‑
tionality) running on each network (DMZ and internal
network) in order to enumerate the network services. For
each enumerated network service the output is given to
Aness, to examine which services are supported for auto‑
mated security testing.

Within this meticulously crafted test network, we con‑
ducted a series of systematic tests and assessments. Cen‑
tral to this validation processwas the deployment anduti‑
lization of our proprietary toolset within a randomly se‑
lected system segment of the network. This approach en‑
sured an objective and unbiased evaluation, allowing us
to gauge the framework’s performance, scalability, and its
capacity to identify vulnerabilities and enhance security
in a dynamic, unpredictable context. It is imperative to
acknowledge that the Common Vulnerabilities (CVs) de‑
tected by the tool within each protocol scenario surpass
the values displayed in the tables presented in tables 4,
3, 2. To elucidate the variability in environmental scores
and base scores, a representative sample is meticulously
chosen for analysis.

For smtp we compare two different setups: a postϐix
server with the default conϐiguration, and a second in‑
stance running on a non‑typical port. We also check the
domain version. As shown in Table 2, Aness can effec‑
tively identify the effect of the environmental changeswrt
the environmental score of the CVEs of the relevant ser‑
vice. For example, a vulnerability that may be abused to
cause a denial of service (e.g. CVE‑2021‑35525)would be
more exploitable, if the systemconϐiguration allowsunau‑
thenticated service use, as in the case of open relay.

For the ftp servicewe set up the Proftpd 1.3.7 ftp server in
the default conϐiguration. We present the exploitability of
this service from two different attack vectors, i.e. testing
the effectiveness of the attackswhen they are executed lo‑
cally (AV:L) or from the same network (AV:A – see Table
3). We observe that the bounce attackwas valid only from
the local network devices, which in turn affects the envi‑
ronmental AV attribute of the relevant vulnerabilities.

For the http servicewe set up twodifferent conϐigurations
based on an Apache 2.4.41 http server. In the ϐirst case
we deploy a serverwith a self‑signed certiϐicate andwith‑
out proper certiϐicate chain validation. In the second case
the server is properly conϐigured but it is left vulnerable
to referrer checker10. As shown in Table 4 Aness is able
to automatically assess the environmental changes of the
relevant vulnerabilties.

Default SMTP Unknown Port SMTP
CVE Base score Env score Env score

CVE‑2021‑25218 7.5 High 7.5 High 9.4 Critical
CVE‑2021‑25216 9.8 Critical 9.5 Critical 9.4 Critical
CVE‑2017‑5930 2.7 Low 2.7 Low 6.7 Medium
CVE‑2021‑25214 6.5 Medium 6.5 Medium 8.3 High
CVE‑2020‑8625 8.1 High 7.8 High 7.7 High
CVE‑2021‑35525 5.3 Medium 5.3 Medium 9.4 Critical
CVE‑2019‑16791 5.9 Medium 3.7 Low 7.7 High
CVE‑2017‑10140 7.8 High 3.3 Low 7.3 High

Table 2 – SMTP Base ‑ Environmental score

Local Adjacent Network
CVE Base score Env score Env score

CVE‑2020‑9273 8.8 High 7.6 High 7.1 High
CVE‑2020‑9272 7.5 High 8.6 High 8.2 High
CVE‑2019‑18217 7.5 High 8.6 High 8.2 High

Table 3 – FTP Base ‑ Environmental score

Case 1 Case 2
CVE Base Score Env Score Env Score

CVE‑2020‑13950 7.5 High 9.4 Critical 6.5 Medium
CVE‑2020‑1927 6.1 Medium 9.6 Critical 6.1 Medium
CVE‑2019‑1934 8.3 High 8.3 High 5.4 Medium

Table 4 – HTTP Base ‑ Environmental score

5.2 Aness functionality behavior in a system
with unknown services

In addition to our primary validation approach in a
testbed environment, we also validated the effectiveness

10https://Nmap.org/nsedoc/scripts/http‑referer‑checker.html

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

113

https://Nmap.org/nsedoc/scripts/http-referer-checker.html


Fig. 5 – Aness architecture and workϐlow

Fig. 6 – Experimental topology

and reliability of our proposed framework in a real‑word
scenario, wherein we tested a randomly selected server,
operating within the network infrastructure of the Uni‑
versity of Piraeus. Themain goal was to assess the frame‑
work’s responsiveness and accuracy in a context distinct
from the controlled test environment in which it was ini‑
tially developed and tested. By subjecting our framework
to this unanticipated scenario, we sought to ascertain its
capability to correctly identify andaddress vulnerabilities
and security‑related concerns beyond the conϐines of con‑
trolled conditions. This approach is instrumental in en‑
abling a transparent depiction of the tool’s response to a
randomly generated scenario.

It is very important to mention the conditions under
which the experiments were carried out. First of all, we
had the full permission of the network administrator and
the system owner to run the network environmental vul‑
nerability analysis on the IP range of the target network.
Only the Aness tool was run, so as not to know any infor‑

mation beyond the IP of the target host. This means that
we perform the second part of our methodology, the ac‑
tive scan. The experiment was run ϐive times and we got
the same results.
As shown in Table 5, the results include several low level
vulnerabilities for the SMTP service. An FTP service was
not identiϐied in the tested server, while for HTTP vulner‑
abilities of Low risk were mainly anticipated. Wewill dis‑
cuss these in more detail below.
In the case of SMTP, we observe that for almost all CVEs,
the environmental score is signiϐicanlty lower than the
base score. This happens when the vulnerabilities de‑
tected are of a low level. This is mainly due to the fact
that the environmental security tests run by Aness for the
SMTP exhibited no actual risks on known attacks against
SMTP, such as OpenRelay, Strange Port or SMTP enumer‑
ation. The results indicate that the SMTP service in the
system under examination has been properly hardened,
e.g. by updating/patching the service itself and/or by ap‑

©International Telecommunication Union, 2024114

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024



CVE SMTP BASE SMTP ENVIRONMENTAL FTP CVE HTTP BASE HTTP ENVIRONMENTAL
SCORE SCORE SCORE SCORE

2023‑34108 8.8 HIGH 4.3 (MEDIUM) IN THIS CASE 2021‑44790 9.8 CRITICAL ”YOUR SYSTEM HAS NO
2022‑3569 7.8 HIGH 3.3 (LOW) CVES ARE 2021‑44224 8.2 HIGH VULNERABILITIES THAT ARE
2021‑33913 9.8 CRITICAL 5.3 (MEDIUM) NOT APPLICABLE 2020‑13938 5.5 MEDIUM RELATED TO SSL AND CERTIFICATES.
2021‑33912 9.8 CRITICAL 5.3 (MEDIUM) 2018‑1312 9.8 CRITICAL SO, THE SYSTEM’S ENVIRONMENTAL.
2021‑35525 5.3 MEDIUM 5.3 (MEDIUM) 2018‑1283 5.3 MEDIUM SCORE MAY BE ’0’
2020‑12063 5.3 MEDIUM 5.3 (MEDIUM) 2017‑15715 8.1 HIGH
2019‑16791 5.9 MEDIUM 3.7 (LOW) 2017‑15710 7.5 HIGH THIS SCORE MAY BE FICTITIOUS
2012‑0812 6.1 MEDIUM 4.7 (MEDIUM) 2016‑8612 4.3 MEDIUM BECAUSE YOUR SYSTEMMAY BE
2017‑10140 7.8 HIGH 3.3 (LOW) 2017‑9798 7.5 HIGH EXPOSED TO OTHER ATTACKS NOT
2017‑5930 2.7 LOW 2.7 (LOW) 2016‑8743 7.5 HIGH COLNSIDERED IN THIS VERSION
2021‑25216 9.8 CRITICAL 5.3 (MEDIUM) 2017‑9789 7.5 HIGH OF THE TOOL.”

2017‑9788 9.1 CRITICAL
2017‑7679 9.8 CRITICAL
2017‑7668 7.5 HIGH
2017‑3169 9.8 CRITICAL
2017‑3167 9.8 CRITICAL

Table 5 – Real case results table

plying additional network security controls that would
mitigate such SMTP‑oriented attacks. The conclusion is
that in this case, we had reasonable results.

In the case of the FTP protocol, the result was that no CVE
was detected to be active. According to the speciϐication
of the Aness tool, the table that extracts the CVEs from
the NIST database must be empty to get this result. For
this to happen: (a) no vulnerabilities exist for the speciϐic
FTP instance; or (b) the code has not been updated to any
new changes on the website or in the NIST database API
regarding the extraction of information; or (c) there is no
such service installed. In our case, the code of the tool
is updated, so after the analysis was conducted, we ver‑
iϐied with the system administrator that no FTP service
was running in the examined server. Therefore, the test‑
ing result was veriϐied to be correct.

In the case of the HTTP protocol, we ϐirst see that the list
of identiϐied CVEs is the longest among the tested ser‑
vices, which is quite reasonable. Then we notice that for
each CVE a base score is provided, as extracted by Aness
from the NIST database. However, in the environmental
score, there is a message explaining that the system does
not appear to have any SSL‑related or Certiϐicate‑related
vulnerabilities, which are the main examined vulnerabil‑
ity indicators of Aness for the HTTP service. As indicated
by the tool, this may require further manual investigation
by the administrator, since it implies that: (a) either all
HTTPvulnerabilities areproperlymitigatedor (b) vulner‑
abilities may exist beyond the scope tested by this tool.
From a technical point of view, since Aness employs var‑
ious HTTPS security tools like sslyze, the results may be
used by the administrator as a ϐirst level of assurance that
“lowhanging fruits” on certiϐicate and SSL/TLS conϐigura‑
tion do not exist. If needed, further investigation on other
mitigation controls relatedwithHTTPvulnerabilitiesmay
be additionally run for additional assurance.

6. DISCUSSION ‑ CONCLUSION

In this paper, we have presented a comprehensive
methodology and tool aiming at automating the assess‑
ment of environmental security analysis for network ser‑
vices. This approach relies on the establishment of re‑
lationships between network connections, network secu‑
rity systems, the various services in operation and the un‑
derlying software components. Through this systematic
framework, we have sought to streamline the vectoriza‑
tion of network interfaces to be assessed, thereby increas‑
ing the effectiveness of the assessment process.

For each of the identiϐied network interfaces, our ap‑
proach facilitates the formulation of protocol‑speciϐic
passive and active security tests. These tests, which are
designed to be executed automatically, contribute signif‑
icantly to a wider assessment of the true environmental
security state characterizing each examined link. Since
the tool can automate a series of knownpassive and active
security tests, it may assist the administrator in quickly
acquiring a reasonable perception of the security expo‑
sure of network services. Although it may not provide a
full assurance for the security level of the tested network
services, it may be used as an initial evidence of their en‑
vironmental security state in a “one‑click” manner. The
time gained for the administrator in comparisons to in‑
dependently performing all the security tests covered by
Aness, may be utilized by the administrators to perform
targeted and deeper additional security testsmay then be
executed at various network or software layers.

However, besides its beneϐits, we have also identiϐied ar‑
eas where improvements can be made to enhance its ef‑
fectiveness. Primarily, it is important to acknowledge that
the Aness tool heavily relies upon the capabilities of the
Nmap tool. Consequently, any discrepancies or errors
within the Nmap and the .nsa scripts can potentially im‑
pact the efϐicacyof the tool’s results. This necessitates vig‑
ilance and periodic review to ensure the seamless align‑
ment of these components.

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

115



Furthermore, the tool’s operation hinges on the utiliza‑
tion of theNIST vulnerability database, a dependency that
is inherently robust and unlikely to engender issues. An
additional aspect meriting consideration pertains to the
augmentation of the tool’s protocol coverage. By expand‑
ing its capabilities to encompass a broader spectrum of
protocols, the tool could potentially offer a more compre‑
hensive assessment of security in diverse network envi‑
ronments. Thus, from a technical perspective, the tool’s
continued development should involve periodic evalua‑
tions to mitigate any redundancy stemming from embed‑
ded third‑party tools and to accommodate an expanding
repertoire of protocols for assessment. These considera‑
tions stand as integral facets of maintaining and enhanc‑
ing the tool’s efϐicacy in the realm of security assessment.

6.1 Future plans
In the future, we plan to expand the list of supported pro‑
tocols, extending our reach to a wider range of network
communication standards. As it can be seen from the
source code of our framework, each protocol is handled
independently, and does not depend on the others. In ad‑
dition, coordination of all protocol‑speciϐic implementa‑
tions is handled by a centralized orchestrator. This de‑
sign allows for extensibility, to easily add capabilities for
testing additional protocols. At the same time, we plan to
reϐine and extend the criteria that underpin our security
testing for each supported protocol. This enhancement
will strengthen our ability to provide increasingly gran‑
ular insight into the security landscape of network inter‑
faces.

To accelerate the pre‑computation of protocol analysis
logic and improve the dynamicmapping of attacks to spe‑
ciϐic Common Vulnerabilities and Exposures (CVEs), we
are actively exploring the integration of machine learning
techniques into our methodology. This strategic addition
promises to speed up the assessment processwhilemain‑
taining a high level of accuracy. Our research also includes
the implementation of more efϐicient and effective secu‑
rity policy extraction rules derived from security systems
such as ϐirewalls and Intrusion Detection Systems (IDS).
The use of machine learning approaches in this context
has the potential to optimize rule extraction and thus im‑
prove the overall security posture within network envi‑
ronments.

REFERENCES
[1] FIRST. “Common Vulnerability Scoring System ver‑

sion 3.1 Speciϐication Document Revision 1”. In:
NIST (2019), pp. 1–24. URL: https://www.first.
org/cvss/.

[2] Songyang Wu, Yong Zhang, and Wei Cao. “Network
security assessment using a semantic reasoning
andgraphbased approach”. In:Computers andElec‑
trical Engineering 64 (2017), pp. 96–109. ISSN:

00457906. DOI: 10.1016/j.compeleceng.2017.
02.001. URL: https://doi.org/10.1016/j.
compeleceng.2017.02.001.

[3] Georgios Spanos, Angeliki Sioziou, and Lefteris
Angelis. “WIVSS: A new methodology for scoring
information systems vulnerabilities”. In: ACM In‑
ternational Conference Proceeding Series (2013),
pp. 83–90. DOI: 10.1145/2491845.2491871.

[4] Diptiben Ghelani. “Cyber Security, Cyber Threats,
Implications and Future Perspectives: A Review”.
In: Science PC (Sept. 2022). DOI: 10 . 22541 / au .
166385207 . 73483369 / v1. URL: https : / / doi .
org / 10 . 22541 % 2Fau . 166385207 . 73483369 %
2Fv1.

[5] Danny Velasco Silva and Glen Rodrı́guez Rafael.
“Ontologies for network security and future chal‑
lenges”. In: Proceedings of the 12th International
Conference on Cyber Warfare and Security, ICCWS
2017 (2017), pp. 541–547. arXiv: 1704.02441.

[6] Anoop Singhal. “Security Ontologies for Enterprise
Level Risk Assessment”. In: Network (2012).

[7] Andreas Ekelhart, Stefan Fenz, Markus Klemen,
and EdgarWeippl. “Security ontologies: Improving
quantitative risk analysis”. In: Proceedings of the
Annual Hawaii International Conference on System
Sciences (2007), pp. 1–7. ISSN: 15301605. DOI: 10.
1109/HICSS.2007.478.

[8] Andrew Simmonds, Peter Sandilands, and Louis
Van Ekert. “An ontology for network security at‑
tacks”. In: Lecture Notes in Computer Science (in‑
cluding subseries Lecture Notes in Artiϔicial Intel‑
ligence and Lecture Notes in Bioinformatics) 3285
(2004), pp. 317–323. ISSN: 16113349. DOI: 10 .
1007/978-3-540-30176-9_41.

[9] Leo Obrst, Penny Chase, and Richard Markeloff.
“Developing an ontology of the cyber security do‑
main”. In: CEURWorkshop Proceedings 966 (2014),
pp. 49–56. ISSN: 16130073.

[10] Mario Vega‑Barbas, Vı́ctor A. Villagrá, Fernando
Monje, Raúl Riesco, Xavier Larriva‑Novo, and Julio
Berrocal. “Ontology‑based system for dynamic risk
management in administrative domains”. In: Ap‑
plied Sciences (Switzerland) 9.21 (2019). ISSN:
20763417. DOI: 10.3390/app9214547.

[11] Elena Doynikova, Andrey Fedorchenko, and Igor
Kotenko. “Ontology of metrics for cyber security
assessment”. In: ACM International Conference Pro‑
ceeding Series (2019). DOI: 10 . 1145 / 3339252 .
3341496.

[12] Sami Petäjäsoja, Heikki Kortti, Ari Takanen, and
Juha Matti Tirilä. “IMS threat and attack surface
analysis using common vulnerability scoring sys‑
tem”. In: Proceedings ‑ International Computer Soft‑
ware and Applications Conference (2011), pp. 68–

©International Telecommunication Union, 2024116

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

https://www.first.org/cvss/
https://www.first.org/cvss/
https://doi.org/10.1016/j.compeleceng.2017.02.001
https://doi.org/10.1016/j.compeleceng.2017.02.001
https://doi.org/10.1016/j.compeleceng.2017.02.001
https://doi.org/10.1016/j.compeleceng.2017.02.001
https://doi.org/10.1145/2491845.2491871
https://doi.org/10.22541/au.166385207.73483369/v1
https://doi.org/10.22541/au.166385207.73483369/v1
https://doi.org/10.22541%2Fau.166385207.73483369%2Fv1
https://doi.org/10.22541%2Fau.166385207.73483369%2Fv1
https://doi.org/10.22541%2Fau.166385207.73483369%2Fv1
https://arxiv.org/abs/1704.02441
https://doi.org/10.1109/HICSS.2007.478
https://doi.org/10.1109/HICSS.2007.478
https://doi.org/10.1007/978-3-540-30176-9_41
https://doi.org/10.1007/978-3-540-30176-9_41
https://doi.org/10.3390/app9214547
https://doi.org/10.1145/3339252.3341496
https://doi.org/10.1145/3339252.3341496


73. ISSN: 07303157. DOI: 10 . 1109 / COMPSACW .
2011.22.

[13] Liu Rui, Yan Danfeng, Lin Fan, and Yang Fangchun.
“Optimization of hierarchical vulnerability assess‑
mentmethod”. In: Proceedings of 2009 2nd IEEE In‑
ternational Conference on Broadband Network and
Multimedia Technology, IEEE IC‑BNMT2009 95.2
(2009), pp. 458–462. DOI: 10.1109/ICBNMT.2009.
5348535.

[14] Oluwasefunmi T. Arogundade, Adebayo Abayomi‑
Alli, and Sanjay Misra. “An Ontology‑Based Secu‑
rity Risk Management Model for Information Sys‑
tems”. In: Arabian Journal for Science and Engineer‑
ing 45.8 (2020), pp. 6183–6198. ISSN: 21914281.
DOI: 10.1007/s13369-020-04524-4.

[15] Jesus Gonzalez and Mauricio Papa. “Passive scan‑
ning in modbus networks”. In: IFIP International
Federation for Information Processing 253 (2007),
pp. 175–187. ISSN: 15715736. DOI: 10.1007/978-
0-387-75462-8_13.

[16] Quang Do, Ben Martini, and Kim Kwang Raymond
Choo. “Cyber‑physical systems information gather‑
ing: A smart home case study”. In: Computer Net‑
works 138 (2018), pp. 1–12. ISSN: 13891286. DOI:
10.1016/j.comnet.2018.03.024.

[17] Elias Bou‑Harb, Mourad Debbabi, and Chadi Assi.
“Cyber scanning: A comprehensive survey”. In:
IEEE Communications Surveys and Tutorials 16.3
(2014), pp. 1496–1519. ISSN: 1553877X. DOI: 10.
1109/SURV.2013.102913.00020.

[18] Pranshu Bajpai, Aditya K. Sood, and Richard J. En‑
body. “The art ofmapping IoT devices in networks”.
In:Network Security 2018.4 (2018), pp. 8–15. ISSN:
13534858. DOI: 10 . 1016 / S1353 - 4858(18 )
30033- 3. URL: http://dx.doi.org/10.1016/
S1353-4858(18)30033-3.

[19] Matthias Niedermaier, Florian Fischer, Dominik
Merli, and Georg Sigl. “Network Scanning andMap‑
ping for IIoT Edge Node Device Security”. In: Inter‑
national Conference on Applied Electronics 2019‑
September (2019). ISSN: 18037232. DOI: 10 .
23919/AE.2019.8867032.

[20] Ashiqur Rahman, Kantibhusan Roy Kawshik, Atik
Ahmed Sourav, and Al‑Amin Gaji. “Advanced Net‑
work Scanning”. In: American Journal of Engineer‑
ing Research (AJER) 96.5 (2016), pp. 38–42. ISSN:
2320‑0936. URL: www.ajer.org.

[21] Arunan Sivanathan, Hassan Habibi Gharakheili,
and Vijay Sivaraman. “Can We Classify an IoT De‑
vice using TCP Port Scan?” In: 2018 IEEE 9th In‑
ternational Conference on Information andAutoma‑
tion for Sustainability, ICIAfS 2018 (2018). DOI: 10.
1109/ICIAFS.2018.8913346.

[22] Dimitris Koutras, Panos Dimitrellos, Panayiotis
Kotzanikolaou, and Christos Douligeris. “Auto‑
mated WiFi Incident Detection Attack Tool on
802.11 Networks”. In: 2023 IEEE Symposium on
Computers and Communications (ISCC). 2023,
pp. 464–469. DOI: 10 . 1109 / ISCC58397 . 2023 .
10218077.

[23] Artur Balsam, Maciej Nowak, Michał Walkowski,
Jacek Oko, and Sławomir Sujecki. “Analysis of CVSS
VulnerabilityBase Scores in theContext of Exploits’
Availability”. In: 2023 23rd International Confer‑
ence on Transparent Optical Networks (ICTON).
2023, pp. 1–4. DOI: 10.1109/ICTON59386.2023.
10207394.

[24] Vladimir Vasilyev, Anastasia Kirillova, Alexey
Vulϐin, and Andrey Nikonov. “Cybersecurity Risk
Assessment Based on Cognitive Attack Vector
Modeling with CVSS Score”. In: 2021 Interna‑
tional Conference on Information Technology
and Nanotechnology (ITNT). 2021, pp. 1–6. DOI:
10.1109/ITNT52450.2021.9649191.

[25] Michał Walkowski, Maciej Krakowiak, Marcin
Jaroszewski, Jacek Oko, and Sławomir Sujecki. “Au‑
tomatic CVSS‑based Vulnerability Prioritization
and Response with Context Information”. In: 2021
International Conference on Software, Telecommu‑
nications and Computer Networks (SoftCOM). 2021,
pp. 1–6. DOI: 10 . 23919 / SoftCOM52868 . 2021 .
9559094.

[26] Richard Amankwah, Jinfu Chen, Patrick Kwaku
Kudjo, Beatrice Korkor Agyemang, and Alfred
Adutwum Amponsah. “An automated framework
for evaluating open‑source web scanner vulnera‑
bility severity”. In: Service Oriented Computing and
Applications 14.4 (Dec. 2020), pp. 297–307. ISSN:
1863‑2394. DOI: 10.1007/s11761-020-00296-9.
URL: https://doi.org/10.1007/s11761-020-
00296-9.

[27] Sanghoon Jeon and Huy Kang Kim. “AutoVAS: An
automated vulnerability analysis system with a
deep learning approach”. In: Computers and Secu‑
rity 106 (2021), p. 102308. ISSN: 0167‑4048. DOI:
https : / / doi . org / 10 . 1016 / j . cose . 2021 .
102308. URL: https://www.sciencedirect.com/
science/article/pii/S0167404821001322.

[28] Dimitris Koutras, Christos Grigoriadis, Michalis Pa‑
padopoullos, Panayiotis Kotzanikolaou, and Chris‑
tos Douligeris. “Automating environmental vulner‑
ability analysis for network services”. In: 2022
IEEE Symposium on Computers and Communica‑
tions (ISCC). 2022, pp. 1–7. DOI: 10 . 1109 /
ISCC55528.2022.9912946.

[29] Marek Sikora, Radek Fujdiak, and Jiri Mis‑
urec. “Analysis and detection of application‑
independent slow Denial of Service cyber attacks”.

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

117

https://doi.org/10.1109/COMPSACW.2011.22
https://doi.org/10.1109/COMPSACW.2011.22
https://doi.org/10.1109/ICBNMT.2009.5348535
https://doi.org/10.1109/ICBNMT.2009.5348535
https://doi.org/10.1007/s13369-020-04524-4
https://doi.org/10.1007/978-0-387-75462-8_13
https://doi.org/10.1007/978-0-387-75462-8_13
https://doi.org/10.1016/j.comnet.2018.03.024
https://doi.org/10.1109/SURV.2013.102913.00020
https://doi.org/10.1109/SURV.2013.102913.00020
https://doi.org/10.1016/S1353-4858(18)30033-3
https://doi.org/10.1016/S1353-4858(18)30033-3
http://dx.doi.org/10.1016/S1353-4858(18)30033-3
http://dx.doi.org/10.1016/S1353-4858(18)30033-3
https://doi.org/10.23919/AE.2019.8867032
https://doi.org/10.23919/AE.2019.8867032
www.ajer.org
https://doi.org/10.1109/ICIAFS.2018.8913346
https://doi.org/10.1109/ICIAFS.2018.8913346
https://doi.org/10.1109/ISCC58397.2023.10218077
https://doi.org/10.1109/ISCC58397.2023.10218077
https://doi.org/10.1109/ICTON59386.2023.10207394
https://doi.org/10.1109/ICTON59386.2023.10207394
https://doi.org/10.1109/ITNT52450.2021.9649191
https://doi.org/10.23919/SoftCOM52868.2021.9559094
https://doi.org/10.23919/SoftCOM52868.2021.9559094
https://doi.org/10.1007/s11761-020-00296-9
https://doi.org/10.1007/s11761-020-00296-9
https://doi.org/10.1007/s11761-020-00296-9
https://doi.org/https://doi.org/10.1016/j.cose.2021.102308
https://doi.org/https://doi.org/10.1016/j.cose.2021.102308
https://www.sciencedirect.com/science/article/pii/S0167404821001322
https://www.sciencedirect.com/science/article/pii/S0167404821001322
https://doi.org/10.1109/ISCC55528.2022.9912946
https://doi.org/10.1109/ISCC55528.2022.9912946


In: 2021 IEEE International Conference on Intelli‑
gence and Security Informatics (ISI). 2021, pp. 1–6.
DOI: 10.1109/ISI53945.2021.9624789.

[30] Jan Grashöfer, Christian Titze, and Hannes Harten‑
stein. “Attacks on Dynamic Protocol Detection of
Open Source Network Security Monitoring Tools”.
In: 2020 IEEE Conference on Communications and
Network Security (CNS). 2020, pp. 1–9. DOI: 10 .
1109/CNS48642.2020.9162332.

[31] Van‑Thuan Pham, Marcel Böhme, and Abhik Roy‑
choudhury. “AFLNET: A Greybox Fuzzer for Net‑
work Protocols”. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Ver‑
iϔication (ICST). 2020, pp. 460–465. DOI: 10.1109/
ICST46399.2020.00062.

[32] Gemini George and Sabu M. Thampi. “A Graph‑
Based Security Framework for Securing Industrial
IoT Networks From Vulnerability Exploitations”.
In: IEEE Access 6 (2018), pp. 43586–43601. ISSN:
2169‑3536. DOI: 10.1109/ACCESS.2018.2863244.

[33] Syed Rizvi, Ryan Pipetti, Nicholas McIntyre,
Jonathan Todd, and Iyonna Williams. “Threat
model for securing internet of things (IoT) net‑
work at device‑level”. In: Internet of Things 11
(2020), p. 100240. ISSN: 2542‑6605. DOI: https:
//doi.org/10.1016/j.iot.2020.100240. URL:
https://www.sciencedirect.com/science/
article/pii/S2542660520300731.

[34] Murugiah Souppaya and Karen Scarfone.
“NIST Special Publication 800‑153: Guidelines
for Securing Wireless Local Area Networks
(WLANs)”. In: NIST (2012), p. 17. URL: http :
//nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-153.pdf.

[35] Karen Scarfone and Paul Hoffman. “Guidelines on
Firewalls and Firewall Policy Recommendations of
the National Institute of Standards and Technol‑
ogy”. In: Nist Special Publication (2009).

[36] National Institute of Standards and Technology
(NIST). In: Nist Special Publication (2020). URL:
https://www.nist.gov/privacy-framework/
nist-sp-800-115.

[37] Dimitris Koutras, George Stergiopoulos, Thomas
Dasaklis, Panayiotis Kotzanikolaou, Dimitris Gly‑
nos, andChristosDouligeris. “Security in iomt com‑
munications: A survey”. In: Sensors (Switzerland)
20.17 (2020), pp. 1–49. ISSN: 14248220. DOI: 10.
3390/s20174828.

[38] Klaus Steding‑Jessen, Nandamudi L Vijaykumar,
and Antonio Montes. “Using low‑interaction hon‑
eypots to study the abuse of open proxies to send
spam”. In: INFOCOMP Journal of Computer Science
7.1 (2008), pp. 44–52.

[39] Debdeep Dey, Archisman Dinda, Poornima Pan‑
duranga Kundapur, and R Smitha. “Warezmaster
and Warezclient: An implementation of FTP based
R2L attacks”. In: 2017 8th International Confer‑
ence on Computing, Communication and Network‑
ing Technologies (ICCCNT). IEEE. 2017, pp. 1–6.

AUTHORS
Dimitris Koutras is a PhD
candidate in network security,
at the University of Piraeus,
Department of Informatics. He
obtained a bachelor’s degree
in information technology and
computer technology engi‑
neering from the Technological
educational institute of Central
Greece (Lamia‑2016). Then
he also obtained a Master of

Science (M.Sc.) in security management engineering
from the University of Piraeus (Piraeus‑2019). He cur‑
rently participates in European research programs as a
researcher of University of Piraeus Research center. He
also participates as a trainer in various cybersecurity
seminars, concerning maritime, healthcare and supply
chain. He holds an ISO 27001:2013 lead auditor, cer‑
tiϐication in information security. His research work
concerns network security analysis, risk assessment and
operating systems security. Dimitris has collaborated
with UPRC on several major projects, including CyberSec
for Europe, CyberSecPro, MELITY and ARTEMIS, funded
by the European Union and the Greek government.
Dimitris is also a published author, with ϐive publications,
one of which was praised as an editor’s choice.

Panayiotis Kotzanikolaou
is an associate professor in
network security and privacy
at the University of Piraeus, De‑
partment of Informatics and the
director of the MSc in cyberse‑
curity and data science. He has
a degree in computer science
(1998) from the University of

Piraeus and a Ph.D in ICT security (2003). Formerly, has
served as a security auditor at the Hellenic Authority for
the Security and Privacy in Communications (ADAE), and
has also worked as a security consultant in the private
sector. He has participated in various national and Eu‑
ropean R&D projects. He has participated as a Program
Committee member in international conferences and he
is a reviewer in various international journals. He has
published more than 100 papers in books, journals and
international conferences. He is a member of the Greek
Computing Society and has received various certiϐica‑
tions in information security (CISSP, ISO 27001 Lead
Auditor).

©International Telecommunication Union, 2024118

ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024

https://doi.org/10.1109/ISI53945.2021.9624789
https://doi.org/10.1109/CNS48642.2020.9162332
https://doi.org/10.1109/CNS48642.2020.9162332
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/https://doi.org/10.1016/j.iot.2020.100240
https://doi.org/https://doi.org/10.1016/j.iot.2020.100240
https://www.sciencedirect.com/science/article/pii/S2542660520300731
https://www.sciencedirect.com/science/article/pii/S2542660520300731
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-153.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-153.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-153.pdf
https://www.nist.gov/privacy-framework/nist-sp-800-115
https://www.nist.gov/privacy-framework/nist-sp-800-115
https://doi.org/10.3390/s20174828
https://doi.org/10.3390/s20174828


Evangelos Paklatzis is an
undergraduate student at Uni‑
versity of Piraeus, Department
of Digital Systems, majoring in
”Software and Data Systems”.
He has been working profes‑
sionally as a software engineer
for over 2 years, developing
and maintaining software in
projects for the Greek public
sector, telecommunications,

banking, and investment industries. He has expertise in
a variety of programming languages and technologies in‑
cluding C#, Go, Java, SQL, Docker, Kubernetes and Azure.
Also, he holds the Azure Fundamentals certiϐication by
Microsoft.

ChristosGrigoriadis is a highly
qualiϐied and experienced lec‑
turer with a background in pro‑
duction and management en‑
gineering and secure engineer‑
ing technologies.He also holds
an ISO 27001:2013 lead auditor
certiϐication in information se‑
curity. Currently, he is conduct‑
ing his PhD research on the topic
of machine learning methodolo‑

gies for the identiϐication and assessment of cumula‑
tive vulnerabilities and cascading attacks on intercon‑
nected systems. Christos has worked with UPRC on
several signiϐicant projects, including CyberSec4Europe,
MELITY, and ARTEMIS, funded by the European Union
and the Greek government. He has also contributed to the
projects AI4Healthsec and Cybersecpro as a researcher
for the Belgian company Focal Point. Christos is also a
published author, with nine publications in journals such
as ACM Sensors and Elsevier Computer and Security.

Christos Douligeris is a pro‑
fessor at the Department of In‑
formatics, University of Piraeus,
Greece. Formerly, he held po‑
sitions with the Department of
Electrical and Computer Engi‑
neering at the University of Mi‑
ami. He was an associate mem‑
ber of the Hellenic Authority for

Information and Communication Assurance and Privacy
and the President and CEO of Hellenic Electronic Gov‑
ernance for Social Security SA. Dr. Douligeris has pub‑
lished extensively in the networking scientiϐic literature
and he has participated in many research and develop‑
ment projects. He is the co‑editor of a book on ‘‘Network
Security’’ published by IEEE Press/ John Wiley and he is
on the editorial boards of several scientiϐic journals, as
well as on the technical program committees of major in‑
ternational conferences. Hehas been involved extensively
in curriculum development both in the USA and Greece.
His latest work has focused on the use of big data and ar‑
tiϐicial intelligence techniques in several areas, mainly in
telecommunicationsplanning andmanagement and in se‑
curity analysis of port information systems. Moreover, he
has beenworking in data analytics techniques in learning
and education and emergency response oerations. Prof,
Douligeris is the director of the Network Research Lab
(http://netlab.cs.unipi.gr/gr/), which is closely cooperat‑
ing with the Security Lab.

©International Telecommunication Union, 2024

Koutras et al.: A framework for automating environmental vulnerability analysis of network services

119


	A FRAMEWORK FOR AUTOMATING ENVIRONMENTAL VULNERABILITY ANALYSIS OF NETWORK SERVICES
	1. INTRODUCTION
	1.1 Motivation and research questions
	1.2 Contribution
	1.3 Paper structure

	2. RELATED WORK
	2.1 Security ontologies
	2.2 Network mapping/scanning methodologies
	2.3 Vulnerability detection tools
	2.4 Vulnerability databases

	3. SYSTEM ARCHITECTURE
	3.1 Network security ontology
	3.2 Environmental network security assessment

	4. IMPLEMENTATION
	4.1 Implementing network and system enumeration
	4.2 Implementing protocol security assessment
	4.3 Aness tool architecture

	5. VALIDATION
	5.1 Validation through customized testedtopology
	5.2 Aness functionality behavior in a systemwith unknown services

	6. DISCUSSION ‑ CONCLUSION
	6.1 Future plans

	REFERENCES
	AUTHORS



