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Abstract – The Border Gateway Protocol (BGP) is crucial for the communication routes of the Inter‑
net. Anomalies in BGP can pose a threat to the stability of the Internet. These anomalies, caused by
a variety of factors, can be challenging to detect due to the massive and complex nature of BGP data
traces. Various machine learning techniques have been employed to overcome this issue. The traditional
approach involves the extraction of ad hoc features, which, although effective, results in a signi icant
loss of information and may be biased towards a certain type of anomaly. A recent supervised machine
learning pipeline learns representations from BGP graphs derived from BGP data traces. Although this
solution achieves good anomaly detection results, the representations learned are speci ic to the types of
anomalies within the training data. To overcome this limitation, in this paper, we propose to learn the
representations of normal BGPbehaviour in an unsupervisedmanner using aGraphAuto‑Encoder (GAE).
This approach ensures that the representations are not limited to the speci ic set of anomalies included
in the training set. These representations associated with a Multi‑Layer Perceptron (MLP)‑based detec‑
tor allowed to achieve an accuracy rate of 99% in detecting large‑scale events, outperforming previous
literature results.
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1. INTRODUCTION

The Border Gateway Protocol (BGP) is a criti‑
cal routing protocol that forms the foundation of
the Internet. Anomalous behaviour of this pro‑
tocol has the potential to impact all services re‑
lying on the Internet. BGP anomalies can have
several causes such as hardware failure, ma‑
licious attacks, or miscon igurations [1]. The
work presented in this paper speci ically fo‑
cuses on BGP anomalies classi ied as large‑scale
due to their major impact on both BGP proto‑
col behaviour and Internet services. Large‑scale
BGP anomalies are mainly caused by con igu‑
ration errors [2], malicious worm spread [3],
power outage [4] or hardware failure [5].
As highlighted by the pipeline described in
Fig. 1, the study of BGP anomalies requires
data traces collected from BGP data collection

projects or archives, such as RIS [6] or Route‑
Views [7]. Such traces are complex and require
a signi icant amount of preprocessing prior to
being fed to machine learning algorithms. As
seen in Fig. 1, part of the preprocessing may
involve transforming them into either statisti‑
cal features (i.e. count of announcements, pre‑
ixes [8, 9, 10, 11]) or graph features (e.g. ec‑
centricity, centrality [12, 11]). Machine learning
models used for BGP anomaly detection are fed
either with graph features or statistical features
extracted from the BGP data traces (cf. anomaly
detection block of Fig. 1).
The literature highlights that graph and statis‑
tical features have demonstrated similar per‑
formance for detecting large‑scale BGP anoma‑
lies [11]. While features extracted from the
graphmay allow extracting complementary and
relevant patterns, the extraction of graph fea‑

ITU Journal on Future and Evolving ITU Journal on Future and Evolving Technologies, Technologies, Volume 5, Issue 1, March 2024Volume 5, Issue 1, March 2024

© International Telecommunication Union, 2024 
Some rights reserved. This work is available under the CC BY-NC-ND 3.0 IGO license: https://creativecommons.org/licenses/by-nc-nd/3.0/igo/. 

More information regarding the license and suggested citation, additional permissions and disclaimers is available at: 
https://www.itu.int/en/journal/j-fet/Pages/default.aspx 



tures still induces a signi icant loss of informa‑
tion compared to the original graph. This obser‑
vationmotivates the development of end‑to‑end
graph‑basedmodels for BGP anomaly detection.
By allowing the Machine Learning (ML) model
to leverage all the information embeddedwithin
the BGP graph, this approach has the potential
to signi icantly enhance the performance of BGP
anomaly detection tools.
This has been enabled by the recent break‑
throughs in the ield of Graph Neural Network
(GNN) [14] with the emergence of new neu‑
ral network models that can handle graphs as
input. In the work from Hoarau et al. [13], a
GNN‑based model was employed to detect BGP
anomalies. As depicted in Fig. 2, the model
from [13] takes a sequence of BGP graphs as
input and predicts the presence of anomalies.
Training the model requires well‑labelled se‑
quences of graphs collected during normal BGP
behaviour and during BGP anomalies. The ap‑
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the detection of BGP anomalies

proach circumvents the extraction of ad hoc fea‑
tures and instead learns the representation dur‑
ing model training (cf. Fig. 1). While it achieves
a 96% accuracy in large‑scale anomaly detec‑
tion, limitations can be identi ied. The repre‑
sentations were speci ically learnt for a partic‑
ular type of anomalies (included in the training
set) andmay not generalize to other types or fu‑
ture anomalies that may signi icantly differ. Ad‑
ditionally, for a given sample of the dataset only
one node is used to compute the prediction er‑
ror, which penalized the diversity of captured
patterns. Finally, the training requires carefully
labelled data on past BGP anomalies, which is
scarce.
In this paper, and unlike in previous work
[13], we propose the use of a Graph Auto‑
Encoder [15] (GAE) to learn BGP graph repre‑
sentations in an unsupervised manner. This ap‑
proach offers multiple bene its.

• The representations are learned from
BGP graphs without anomalies, leading to
greater generalization potential.

• For each sample of the dataset, every node
of the BGP graph (around 60𝐾) instead of
one are used to compute the error of the
model, allowing to capture more diverse
pattern.

• The approach does not require labelled
data, allowing for the utilization of abun‑
dant unlabelled BGP data [6, 7].

Our proposal uses an MLP to classify the rep‑
resentations, which achieved an accuracy rate
of 99% in detecting large‑scale BGP anomaly
events, outperforming previous literature re‑
sults from [12, 13]. This paper con irms
that the combination of unsupervised learn‑
ing and graph representation for BGP improves
anomaly detection. This may open new re‑
search directions for smaller scale anomaly de‑
tection which are yet to be detected by an ML
scheme.
The remainder of this paper is organized as fol‑
lows. In Section 2 we provide a background on
BGP, BGP anomalies and GNN. In Section 3 we
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describe the dataset used in the paper. Section 4
describes our GAE model architecture and
presents how the training was performed. Sec‑
tion 5 focuses on the detection of BGP anomalies
using the representations learned by the GAE.
Section 6 discusses the results of this paper and
presents some direction for future work in the
ield of the detection of BGP anomalies. We con‑
clude the paper in Section 7.

2. BACKGROUND AND RELATED
WORK

2.2 BGP anomaly detection using
features‑based models

BGP routing data is essential for any analysis 
of the BGP protocol. Thankfully, projects such 
as RouteViews [7] and RIPE RIS [6] have been 
collecting and archiving BGP data from differ‑ 
ent collectors distributed across the world since 
2000 (see block BGP data collection of Fig. 1). 
These collectors are connected to several neigh‑ 
bouring BGP routers, from which they receive 
and save BGP update messages. These messages 
are also used to update their Routing Informa‑ 
tion Base (RIB) that they also save periodically 
(see block BGP data sample of Fig. 1). From this 
raw BGP data, a sequence of BGP graphs that re‑ 
lect the evolution of the BGP network can be ex‑ 
tracted, which is automatically carried out by a 
recent tool presented in [19].

2.2.1 Statistical features
Statistical features (see Fig. 1) extracted from 
raw BGP data can be classi ied as: i) volume 
features, such as the number of announcements 
and withdrawals; ii) AS‑PATH features, such as 
average AS‑PATH length, and the maximum edit 
distance. Various work, using statistical fea‑ 
tures, achieved good performance on the detec‑ 
tion of large‑scale anomalies using conventional 
ML models such as SVM [8, 9], Naive Bayes 
classi iers [8, 9], decision trees [9] and deep 
learning [8, 10].

The Internet is composed of Autonomous Sys‑ 
tems (ASes) interconnected by BGP. The major‑ 
ity of these ASes are Internet service providers 
that own IP pre ixes [16] and are identi ied by 
an AS Number (ASN).
The route to an IP pre ix in BGP is identi ied 
by the series of ASes (namely the AS‑PATH) 
that participate in the traf ic forwarding, which 
avoids routing loops [17].

2.1 BGP anomalies
BGP anomalies can be caused by a variety of 
factors such as failures or malfunctions of the 
routing protocol, protocol vulnerabilities [18], 
con iguration errors [2], external events such as 
hardware failure [5] or worm spread [3]. These 
anomalies can cause instability or overload on 
the BGP routers and impact the data plan per‑ 
formances. Worse, they can also lead to in‑ 
valid network topologies [16] resulting in the
unreachability of some prefixes. 
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2.2.2 Graph features
In [12], the authors used BGP graphs to derive 
features from graph theory as input to their ML 
models (cf. Fig. 1 (Graph features.))
In [11], the authors show that both graph and 
statistical features achieve satisfying and simi‑ 
lar performances on large‑scale anomalies. 
However, none of the statistical and graph‑ 
based features achieves satisfying performance 
on a small‑scale origin and path hijacking. Nev‑ 
ertheless, accuracy of SVM with graph features 
outperforms statistical features by 30% [11].

2.3 Representation learning from BGP
graphs

Machine learning algorithms and vanilla neu‑ 
ral networks are not designed to handle graphs 
as input. Recently, the ield of GNN [20] has 
emerged to overcome this issue by propos‑ 
ing neural networks that can directly consume 
graphs and learn representations that can be fed 
to conventional neural network architectures 
(see Fig . 1 (Graph Neural Networks)).
In a previous work [13], a GNN‑based model 
takes as input a sequence of BGP graphs and 
predicts if a given node is the victim of an 
anomaly within this sequence. The architec‑ 
ture of this model is depicted in Fig . 2. Despite 
the good performance of this model, the repre‑ 
sentations are speci ically learned for the type 
of anomalies included in the dataset and could 
fail to generalize to other types of anomalies. 
Additionally, only one node is used to compute 
the prediction error of the model during the 
training, which limits the diversity of learned 
patterns. Furthermore, this approach requires 
carefully labelled data about past BGP anoma‑ 
lies that are not massively available.
In this work, we suggest using a GAE [15] to 
learn representations in an unsupervised man‑ 
ner. The architecture of the proposed model 
is depicted in Fig . 3 (phase 1). This approach 
has three key bene its: (1) the representations 
are learned independently of anomalies, leading
to  greater  generalization  potential, (2) all  the

nodes of the graph are used to compute the er‑ 
ror of the model during the training, allowing for 
the capture of more diverse patterns, and (3) the 
model training does not require labelled data, 
enabling the use of large amounts of unlabelled 
data.

3. DATASET
The dataset used in this work consists of 14 
samples, comprised of 7 positive samples and 
7 negative samples. The positive samples are 
extracted during the occurrence of large‑scale 
anomalies, while the negative samples are ar‑ 
bitrarily collected 24 hours prior to the corre‑ 
sponding positive sample. Manual inspection 
didn’t show any sign of large‑scale anomaly dur‑ 
ing negative samples. Each of these samples is 
extracted from 1 hour of BGP data, where the 
BGP graph is extracted every two minutes. This 
results in a sequence of 30 BGP graphs for each
sample in the dataset 𝐺 = 𝐺1, ..., 𝐺30.  This 
section provides further details on the events 
included in the dataset, the data collection 
process and the BGP graph extraction.

3.1 BGP anomaly events
The anomaly events used in our dataset span 
from 2004 to 2021 and include both older and 
more recent events. Four older events (TTNet, 
IndoSat, TM, and AWS) were included due to 
their frequent use in previous research [12]. Ad‑ 
ditionally, more recent events were selected to 
better re lect the current BGP topology. A sum‑ 
mary of all events in the dataset is provided in 
Table 1. For each event, we also identify the AS 
which is the origin of the anomaly.

3.2 Data collection
Both data collection and graph extraction are 
performed using the BML tool [19]. For positive 
samples, BGP data is collected half an hour be‑ 
fore and after the estimated start of the event, 
resulting in one hour of data per sample. For 
negative samples, BGP data is collected one day 
before each event for one hour. The data is
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collected from the rrc04 and rrc05 collectors,
whichwere chosen for their intensiveuse inpre‑
vious research [10, 12]. Due to the incremen‑
tal nature of BGP, the BGP updates received dur‑
ing the hour of data collection only represent a
small portion of the Internet’s routes. This leads
us to collect data during a priming period before
the sample time window. Every eight hours,
Ripe RIS collectors include RIB dumps that con‑
tain all Internet pre ixes reachable through the
peers of the collectors. So we used a priming
period of 10 hours to ensure that at least one
RIB dump is collected, which allows us to have
a complete view of the routes available on a col‑
lector. The update messages received between
the RIB dump and the observation window are
used to update the routes. Thankfully, all these
tasks are automatically handled by BML [19].

3.3 Graph extraction
Wedenote by𝐺 = (𝑉 , 𝐸, 𝑋) aBGPgraphwhere
𝑉 is a set of nodes corresponding to the BGP
ASes,𝐸 is a set of undirected edges representing
the relationshipbetweenapair of ASes, and𝑋 ∈
ℝ𝑁×1 is the nodes weight matrix where𝑁 is the
number of nodes of the graph. Given a set of BGP

routes, the nodes of the graph correspond to all
the ASes observed in the routes. There exists an
edge between two ASes (nodes) if the two ASes
are adjacent in at least one of the BGP routes.
Each node 𝑛 has a weight 𝑋𝑛 that corresponds
to the number of pre ixes originated by the AS.
For all the events in our dataset, we use BML to
extract a snapshot of the BGP routes every two
minutes and generate a BGP graph. The one‑
hour samples result in sequences of 30 graphs.

Anomaly Date AS #
TTNet Dec. 24, 2004 (9:20 UTC) 9121
IndoSat April 2, 2014 (18:25 UTC) 4761
TM June 12, 2015 (8:43 UTC) 4788
AWS April 22, 2016 (17:10 UTC) 200759
Google August 25, 2017 (3:22 UTC) 15169
ChinaT. June 6, 2019 (9:57 UTC) 21217
India April 16, 2021 (13:48 UTC) 55410

Table 1 – Anomaly events included in the dataset

4. UNSUPERVISED REPRESENTA‑
TION LEARNING

4.1 The Graph auto‑encoder model
The architecture of the GAE [15] model is de‑
picted in Fig. 3 (phase 1). The model is com‑
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posed of two main parts: the encoder and the
decoder. The objective of the encoder is given
an input graph to produce a latent representa‑
tion 𝑍 of this graph. This latent representation
is a matrix of dimension 𝑁 × 𝑆 where 𝑁 is the
number of nodes in the input graph and 𝑆 is the
dimension of the latent space. A vector𝑍𝑛 ∈ 𝑅𝑆

with 𝑛 ∈ 𝑁 called the embedding of the node
𝑛 is the representation of this node in the la‑
tent space. Given, the latent representation 𝑍 ,
the objective of the decoder is to reconstruct the
adjacency matrix 𝐴 of the graph. Finally, given
a reconstructed adjacency matrix ̂𝐴 the quality
of the reconstruction can be evaluated using the
reconstruction error:

𝑅𝐸 = 1
𝑃𝑒

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

−(𝐴𝑖𝑗 ∗ log ( ̂𝐴𝑖𝑗))

+ 1
𝑁𝑒

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

−((1 − 𝐴𝑖𝑗) ∗ log (1 − ̂𝐴𝑖𝑗))

(1)

where 𝑃𝑒 = ∑𝑁
𝑖=1 ∑𝑁

𝑗=1 𝐴𝑖𝑗 is the number of
positive edges and𝑁𝑒 = ∑𝑁

𝑖=1 ∑𝑁
𝑗=1(1−𝐴𝑖𝑗) is

the number of negative edges. An edge between
twonodes 𝑖 and 𝑗 is positive if the nodes are con‑
nected (𝐴𝑖𝑗 = 1) and negative if they are not
(𝐴𝑖𝑗 = 0).

4.1.1 Encoder
The encoder part of the model is a 𝑘 layer
GNNbasedon theGraphConvolutionalNetwork
(GCN) [14] operator. At a layer 𝑙 of the GNN, a la‑
tent representation 𝑍(𝑙) is produced as:

𝑍(𝑙) = 𝐺𝐶𝑁 (𝑙)(𝑍(𝑙−1), 𝐴) = 𝑅𝑒𝐿𝑈( ̃𝐴𝑍(𝑙−1)𝜃(𝑙))
(2)

where ̃𝐴 = 𝐷− 1
2 𝐴𝐷− 1

2 is the symmetrically
normalized adjacency matrix, 𝐷 is the degree
matrix, 𝜃(𝑙) is the weight matrix for the layer 𝑙.
For the irst layer, 𝑍(0) = 𝑋 and 𝜃(1) is a matrix
of dimension 1 × 𝑆. For the layer 𝑙 > 1, 𝜃(𝑙) is
a matrix a of dimension 𝑆 × 𝑆. The inal latent
representation of the graph is𝑍 = 𝑍(𝑘), the out‑
put of the last GCN layer.

4.1.2 Decoder
Given a latent representation𝑍 of the graph, the
reconstructed adjacency matrix ̂𝐴 is computed
as the inner product between the node embed‑
dings:

̂𝐴 = 𝜎(𝑍𝑍𝑇 ) (3)

where 𝜎 is the sigmoid activation function.

4.2 Model training
Our experiments are implemented using the Py‑
Torch Geometric [21] and scikit‑learn libraries
and are available online1.
The aim of the training phase is to adjust the
model’s parameters, 𝜃(0), … , 𝜃(𝑘), in order to
capture meaningful latent representations. To
this end, the model is trained in an unsuper‑
visedmanner onBGP graphs that do not contain
anomalies (only negative samples). In order
to assess themodel’s generalization capabilities
on unseen data, a portion of the graphs must
be reserved for testing. As we want to test the
model on every event present in our dataset, we
train our model using a Leave‑One‑Out‑Cross‑
Validation (LOOCV) scheme where each event
is iteratively used as the test set and the others
are used to train the model. Therefore, seven
models are trained, one for each event in the
dataset. During the training phase, only the neg‑
ative samples are used and the Adam optimizer
with a learning rate of 0.001 is used to mini‑
mize the reconstruction error. With each neg‑
ative sample comprised of 30 graphs, the total
number of graphs used for training is 6 ∗ 30 =
180. To reduce computational cost, the nega‑
tive edges are sampled for the calculation of the
reconstruction error. The number of negative
edges sampled for each graph is set tomatch the
number of positive edges, and the sampling is
performed once for all experiments.

4.3 Early stopping
One of the dif iculties of training a machine
learning model for representation learning is to
avoid over itting, which can produce represen‑
1https://github.com/KevinHoarau/BGAE
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Fig. 4 – Reconstruction error during the training of the GAE

tations that are too speci ic for the samples in
the dataset and that do not generalize to unseen
data. In our experiment, ourmodel is trained on
100 epochs andwith a batch size of 16butwe in‑
troduce an early stopping [22] mechanism that
can stop the training of the model when the re‑
construction error reaches a plateau.
First, we measured 𝑅𝐸0, the initial reconstruc‑
tion error when no training has been made.
Then at each epoch 𝑡 we compute the difference
between the actual reconstruction error and the
previous one:

Δ𝑅𝐸 = 𝑅𝐸𝑡−1 − 𝑅𝐸𝑡 (4)

During the training, if Δ𝑅𝐸 is lower than a
convergence threshold 𝜆 then stagnation is de‑
tected. As short‑lived stagnation may happen,
we only stop the training when the stagnation
is maintained for ive epochs. The convergence
threshold is de ined as a fraction of the initial re‑
construction error:

𝜆 = 𝑅𝐸0 × 𝜖 (5)

Fig. 4 shows the evolution of reconstruction er‑
ror during the training of themodel with a value
of 𝜖 = 0.005. We can see a few epochs are
needed to reach the plateau and that the early
stopping mechanism is doing well at detecting
the stagnation.

4.4 Visualization of reconstruction
error

We can make the assumption that when a node
𝑛 is a victimof an anomaly, its embedding vector
𝑍𝑛 will also be impacted. And as our model was
not trained on BGP graphs containing anoma‑
lies, we hypothesize it will fail to reconstruct the
adjacency of this node. For a sequence of graphs
and a given node 𝑛, we propose to visualize the
reconstructionof the adjacencyof𝑛. To this end,
for each graph of the sequence, the reconstruc‑
tion error is computed using all the positive and
negative incident edges of 𝑛.

Fig. 5 shows the evolution of the reconstruction
error of a node with and without an anomaly.
For each event, the model trained on the re‑
maining events is applied to both the nega‑
tive and positive sequence of graphs and sub‑
sequently, the reconstruction error is computed
for the adjacency of the node victim of the
anomaly. Two observations can be made from
Fig. 5. First, without an anomaly (i.e. nega‑
tive sequences), the reconstruction error is sta‑
ble. Second, the reconstruction error signi i‑
cantly increases during an anomaly. The com‑
bination of these two properties is practical for
the detection of anomalies.
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5. ANOMALY DETECTION
In this section, we investigate how the repre‑ 
sentation learned using the GAE model can be 
used to detect BGP anomalies. The problem con‑ 
sidered is a time‑series classi ication problem. 
From a sequence of 30 graphs 𝐺1, … , 𝐺30, we 
extract a time‑series 𝑍 = 𝑧 , … 𝑧𝑛

30 where 𝑧𝑡𝑛 ∈ 
ℝ𝑆 is the latent representation of the node 𝑛 for 
the graph 𝐺𝑡. For a given time‑series 𝑍 , the ob‑ 
jective is to predict if the sequence contains an 
anomaly.
For this task, we used an MLP as this model 
has achieved good performances in the BGNN 
model of [13]. This model cannot consume 
time‑series hence the input should irst be lat‑ 
tened. Therefore, the time‑series 𝑍 = 𝑧 , … 𝑧𝑛

30

is transformed into a vector 𝑍′ ∈ ℝ30𝑆 . The vec‑ 
tor 𝑍′ is then fed to the MLP that produces a bi‑ 
nary output 𝑦 ̂ corresponding to the presence or 
the absence of an anomaly.
The pipeline for the detection of an anomaly is 
depicted in Fig. 3 (phase 2). In comparison to 
previous work by Hoarau et al. (BGNN), the 
time‑series 𝑍 is produced by the pre‑trained en‑ 
coder of the GAE (step 1) whereas in BGNN a 
GNN is trained in an end‑to‑end fashion (cf. Fig. 2).

5.1 Training of the MLP
We used an LOOCV to evaluate the perfor‑ 
mances of the models. For each test event, the 
models produce two outputs, one for the neg‑ 
ative sequences and one for the positive se‑ 
quences of graphs. When the seven events have 
been used for testing, an output vector of dimen‑ 
sion 14 is constructed by concatenating all the 
outputs. Finally, the output vector is used to 
compute the accuracy, F1 score and AUC met‑ 
rics [23]. The convergence of a neural network 
can vary depending on the initialization of its 
internal weights, it is important to evaluate the 
stability of the model over multiple runs. We 
trained the entire pipeline (cf. Fig. 3) multiple 
times (30 times with different seeds) to com‑ 
pute and reduce the standard deviation of the 
measured performance metrics.

5.2 Evaluation metrics
To evaluate the performance of our model, we 
rely on the following metrics:

Accuracy The accuracy is used to evaluate the 
overall performance of the classi ier for both 
positive and negative samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision The precision rates the number of
true positives among all the samples classi ied
as positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

Recall The recall rates the number of samples
classi ied as positive among all the positive sam‑
ples.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

F1 score The F1 score is the harmonic mean
of the precision and recall.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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where 𝑇 𝑃 (True Positive), 𝑇 𝑁 (True Negative), 
𝐹 𝑃 (False Positive) and 𝐹𝑁 (False Negative) 
come from the confusion matrix [23].
Due to the fact that a neural network produces 
a value within the range of [0, 1] rather than a 
binary value, a threshold needs to be applied in 
order to determine the inal class. However, the 
choice of threshold has an impact on the met‑ 
rics used to evaluate the model. For instance, 
if a low threshold is used, most of the samples 
will be classi ied as positive, leading to a high re‑ 
call value but with low precision. To assess the 
performance of the model at different threshold 
settings, the Area Under the Curve (AUC) is com‑ 
puted from the Receiver Operating Characteris‑ 
tic (ROC) curve (see Fig. 6). The AUC re lects 
the degree of separability of the output classes, 
where a score of 1 indicates perfect separability 
and a score of 0.5 or below indicates no separa‑ 
bility.

5.3 Exploration of the GAE hyperpa‑
rameter space

Two hyperparameters of the GAE model have a
signi icant impact on the representation capa‑
bility of themodel and subsequently on the per‑
formance of anomaly detection. First, the num‑
ber of GNN layers used in the encoder that we
denote 𝑘 impacts how far information can prop‑
agate over the edges of the graph to compute
the latent representations of the nodes [24]. In
other words, a node’s representation is in lu‑
enced only by nodes within a distance of 𝑘 or
less. In theory, large values of 𝑘 would allow
the detection of anomalies from distant nodes.
However, deep GNN models (i.e., those with a
high𝑘) are prone to over‑smoothing and vanish‑
ing gradient problems [25], which can compro‑
mise the quality of the learned representations.
Therefore, a balance should be found to still cap‑
ture information from distant nodes without in‑
troducing these types of issues.
The second hyperparameter to consider is 𝑆,
which represents the dimension of the latent
representation of the nodes. It corresponds to

the number of GNN blocks per layer and deter‑
mines the expressiveness of the representations
learnedby themodel. Lowvalues of𝑆 will result
in representations that fail to capture intricate
patterns in the data, while excessive values may
capture irrelevant information.
Fig. 7 illustrates the impact of these parameters
on the accuracy of anomaly detection. For each
combination of these parameters, we trained
the GAE and applied the MLP to the represen‑
tations obtained to measure the detection accu‑
racy. The results show that the optimal com‑
bination of parameters, which yields 0.99 accu‑
racy, is 𝑘 = 4 and 𝑆 = 8. A clear separation be‑
tween the upper left and bottom right portions
of the igure suggests that better performance
is achieved when 𝑆 ≥ 𝑘. This inding indicates
that deeper GNNs require larger representation
sizes.
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Reference line

Fig. 6 – Receiver Operating Characteristic (ROC) curve

5.4 Results
Table 2 shows the performance of the MLP us‑ 
ing representation learned by the GAE trained 
with hyperparameters 𝑘 = 4 (i.e the number of 
GNN layers) and 𝑆 = 8 (i.e. the number of GNN 
blocks per layer). These values are selected as 
they lead to the best accuracy score in the pre‑ 
vious section.
We can see that the overall performances of the 
model are high with an accuracy and an F1 score 
of 0.99 and the standard deviation of 0.03 in‑ 
dicates the stability of the model over multiple 
random initializations. Furthermore, the AUC of
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Test set
Accuracy F1 score AUC

Mean Std
dev Mean Std

dev Mean Std
dev

TTNet 1.00 0.00 1.00 0.00 1.00 0.00
IndoSat 1.00 0.00 1.00 0.00 1.00 0.00
TM 1.00 0.00 1.00 0.00 1.00 0.00
AWS 1.00 0.00 1.00 0.00 1.00 0.00
Google 1.00 0.00 1.00 0.00 1.00 0.00

ChinaTelecom 0.93 0.17 0.87 0.34 1.00 0.00
India 0.97 0.12 0.98 0.08 1.00 0.00
Overall 0.99 0.03 0.99 0.03 1.00 0.01

Table 2 – Performance metrics on the test sets

1 shows that the positive and negative samples
could be perfectly classi ied by the model using
a well‑tuned decision threshold. Fig. 6 shows
the ROC curves and AUC values depending on
the number of layers 𝑘 of the GAE encoder. It
consolidates the choice of, 𝑘 = 4 as stated in the
previous section.
It is worth noting, that only the more recent
anomalies (ChinaTelecom 2019, India 2021)
are sometimes missclassi ied by the model (cf.
Table 2). One explanation could be that the GAE
ismostly trained on older graphs, and therefore,
the model is not well adapted to extract mean‑
ingful representations for these newer graphs.
In future work, this issue could be overcome
by training a GAE using graphs extracted during
the same year of the anomaly. Thiswould not be
possible with supervised graph representation
learning such as BGNN [13]. To dig deeper into
the improvement brought by the GAE, Table 3
presents a comparison of our proposal (BGAE)
with a previous work by Hoarau et al. (BGNN)
for different values of 𝑘, the number of GNN lay‑
ers. Two observations can be made. First, both
BGAE and BGNN achieve higher performances
for 𝑘 = 4. Second, except for 𝑘 = 16, BGAE al‑
ways achieves a higher performance than BGNN
for the same value of 𝑘.
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Fig. 7 – Accuracy of the MLP depending on the GAE hy‑ 
perparameters

6. DISCUSSION AND PERSPECTIVES
The impact of several parameters is yet to be 
evaluated, i.e. the number of BGP collectors, the 
distribution of these collectors in the Internet 
topology, as well as their position relative to the 
attacker or the victim might be worth investi‑ 
gating. As mentioned in Section 5, using graph 
representation learned from a past Internet era 
to detect the modern era probably degrades the 
performance. The impact of the time difference 
between the training period and the anomalies 
should be evaluated. We have the intuition that 
the GAE should be trained with the most recent 
data available. However, in this work for com‑ 
parison purposes, we preferred to comply with 
the ML pipeline from the authors of a previous 
proposal in which their training set mixes 
data  from events  up  to ifteen  years  apart.
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GNN layers Model
Accuracy F1 score AUC

Mean Std
dev Mean Std

dev Mean Std
dev

1 BGNN 0.89 0.05 0.88 0.05 0.86 0.03
BGAE 0.91 0.04 0.91 0.03 0.88 0.00

2 BGNN 0.90 0.03 0.89 0.04 0.87 0.05
BGAE 0.93 0.04 0.92 0.05 0.97 0.04

4 BGNN 0.96 0.05 0.96 0.05 0.99 0.03
BGAE 0.99 0.03 0.99 0.03 1.00 0.01

8 BGNN 0.91 0.08 0.91 0.05 0.91 0.08
BGAE 0.95 0.10 0.92 0.18 0.97 0.09

16 BGNN 0.78 0.11 0.72 0.20 0.79 0.09
BGAE 0.77 0.11 0.72 0.17 0.77 0.10

Table 3 – Comparison of the performances of BGNN [13] and BGAE depending on the number of GNN layers.

As discussed in Section 4, GAE will allow gathering 
a much richer set of training data to produce 
the graph representation. The optimal 
duration of the training data should be 
evaluated.
In BGAE’s unsupervised representation learn‑ 
ing, all nodes of the BGP graph are used for com‑ 
puting the model’s error. This differs from the 
seminal BGNN model which uses only a single 
node. While this characteristic allows BGAE to 
capture more diverse representations of BGP 
nodes it may raise questions regarding the cost 
of computing such a topology‑wide reconstruc‑ 
tion error. During the GAE training, this only 
adds a marginal computation cost compared to 
the most intensive tasks which are the forward 
and backward passes of the GNN architecture. 
Moreover, when BGAE is deployed for anomaly 
detection, it is only the model inference that has 
to be performed in a timely manner. During 
this phase, the reconstruction error is not com‑ 
puted, making BGNN and BGAE models equiva‑ 
lent in terms of complexity.
The 0.99 accuracy achieved through the use of 
a GAE [15] could lead the reader to erroneously 
consider that there is no signi icant margin left 
for the improvement of BGP anomaly detec‑ 
tion. However, while most of the research ef‑ 
fort has focused on large‑scale route leaks, BGP 
anomalies also comprise origin and path hi‑ 
jacking which are usually much smaller events. 
Fig. 8  describes  the  BGP  anomaly  detection 

accuracy achieved by various machine learning 
models depending on the type of events. It 
shows that feature‑based models’ [11, 26] accu‑ 
racy  is  somewhat satisfying on route leaks  (.88 
accuracy) but they may not be of any practical 
use to date  for origin  hijacking (.57 accuracy) 
and  path  hijacking (.67 accuracy). To the best 
of our knowledge, Graph‑based models have not 
yet been adapted and evaluated for origin and 
path hijacking anomaly detection. The signif‑ 
icant enhancement they have made to large‑ 
scale anomaly detection suggests that it might 
be a worthwhile endeavour.
To date, none of the graph‑based models that 
have been used on BGP data intrinsically inte‑ 
grate the temporal dimension of the BGP data. 
The temporal GNN model, as outlined in [27], 
holds great potential for this undertaking.

7. CONCLUSION
The detection of BGP anomalies through ma‑ 
chine learning has long been hindered by the 
limitations of the input features: either statis‑ 
tical features (such as count of announcements, 
pre ixes) or graph features (such as eccentricity, 
centrality) used by the models. The extraction 
or computation of such features from raw BGP 
data resulted in a signi icant loss of information, 
making it dif icult to detect BGP anomalies. 
Recent work [13] has shown that the use of 
GNN‑based models overcome this limitation by
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Fig. 8 – Research directions and accuracies achieved in
previous work

learning representations directly from the BGP
graph during the training process, eliminating
the need for statistical features or graph fea‑
tures. However, this approach was still lim‑
ited by the supervised learning of the graph rep‑
resentations, which requires carefully labelled
BGP data and restricts the generalization of the
model.
Thework presented in this paper addresses this
issue through the use of an unsupervised GAE to
learn the graph representations. This approach:

• enhances the generalization capability of
the model,

• does not require labelled BGP data which
allows the use of a large amount of unla‑
belled BGP data,

• uses every node of the graph to capture all
the subtlety of BGP,

• provides an 0.99 accuracy for BGP anomaly
detection on large‑scale events.

The presented results are also promising for
small‑scale BGP anomaly detection such as ori‑
gin hijacking and path hijacking which will be
explored in future works.
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