ITU Workshop on "Practical measurement of EMF exposure"

(Gaborone, Botswana, 25-26 July 2011)

Application of the IEC 62232 standard to EMF measurements around cellular base stations

MARNUS VAN WYK, EMSS CONSULTING, SOUTH AFRICA

Why EMF Measurements?EMSS Overview

RF fields in our environment

Guidelines for safe exposure

Typical exposure vs guidelines

Cellular Networks

Measurement Equipment

Measurement Methodology

Demo

Reporting

Uncertainty analysis

Exclusions

Base station Compliance

Conclusion

Why EMF Measurements?EMSS Overview

RF fields in our environment

Guidelines for safe exposure

Typical exposure vs guidelines

Cellular Networks

Why EMF Measurements?

Cellular exclusion zone accessibility

- Measurements normally not required or used to determine compliance boundary
- Measure at publicly accessible areas around cellular base stations

Public concern

Gaborone, Botswana, 25-26 July 2011

Why EMF Measurements?Example site: Photographs

Why EMF Measurements?Example site: Map

Why EMF Measurements?

Example site: Report

Introduction

As part of an electromagnetic measurement survey program of base station installations performed by the Botswana Telecommunications Authority (BTA), measurements were performed at Grand Palm. The aim of the survey was to measure the electromagnetic exposure levels at various positions around the base station.

Measured results are compared to the guidelines of limiting exposure proposed by the International Commission on Non-Ionizing Radiation Protection (ICNIRP).

Measured Results

Table 1 and Figure 1 presents the measured positions and exposure levels in terms of a proventage of the ICNRP guidelines, where a 100% value would indicate that the safe exposure limit for the General Public has been reached. The total exposure is given in the first column of the table. Since the aim of the survey was to measure the typical exposure values, the reported results are un-extrapolated peak field instantaneous exposure results, at the specific date and time of the measurement survey.

Summary of Results & Conclusion

For the measured results presented in this report a 100% value would indicate that the ICNIRP exposure limit for the General Public has been reached. The highest value measured is 1.057% of the ICNIRP General Public guidelines and was obtained at position 3. This is more than 90 times below the General Public limit.

Table 1: RF Exposure Levels at Measurement Positions							
Measured On	No.	Position	Total Exposure	GSM900 DL	GSM1800 DL	UMTS DL	Others
2010/08/30 16:33	1	At the entrance of the Grand Palm Resort.	0.0354%	0.0235%	0.0004%	0.0005%	0.0110%
2010/08/30 16:48	2	On the 6th floor in the guest lift room.	0.0238%	0.0026%	0.0001%	0.0001%	0.0210%
2010/08/30 16:67	3	On the 6th floor in the service lift room.	1.0578%	1.0396%	0.0020%	0.0039%	0.0123%
2010/08/30 16:10	4	In line with antenna, along the second drive way from entrance.	0.2212%	0.2089%	0.0008%	0.0004%	0.0111%
2010/08/30 16:17	5	In line with antenna, next to swimming pool at the back of the hotel.	0.0597%	0.0483%	0.0000%	0.0001%	0.0113%
2010/08/30 16:24	6	In line with antenna, on the rocky outcrop close to the pond, behind the hotel.	0.0191%	0.0078%	0.0001%	0.0001%	0.0112%
2010/08/30 16:32	7	In line with antenna, in the maintenance yard east of building.	0.0388%	0.0258%	0.0001%	0.0002%	0.0127%
2010/08/30 16:44	8	In line with antenna, at the maintenance offices.	0.0391%	0.0271%	0.0000%	0.0004%	0.0115%

Measurement Equipment and Methodology

Both survey meter and probe must be calibrated on a regular basis. The calibration status is presented in the following table.

Survey Meter:	Narda SRM 3000 Selective Radiation	Calibration	Valid calibration:
	Meter, S/N: G-0113	Status:	17 September 2008
Probe:	Narda BN 3501 Three-Axis E-Field	Calibration	Valid calibration:
	Probe, G/N: J-0019	Status:	26 February 2009

Assessment Process and Software

The assessment process, software and training were developed by EMSS Consulting (EMSS). EMSS has expertise in the field of human exposure assessment to radiofrequency fields.

Trequercy Fields. BTA express were trained by EMSs to perform measurements in accordance with the measurement prodocil of the CENELES C 9449 (Neversher 2006) standard for the n-stubase stations. The CENELES C 9442 (Neversher 2006) standard for the n-stuass stations. The CENELES C 9442 standard requires an uncertainty as and internet to be performed when extrapolation is not used to address maximum traffic. A full uncertainty analysis for the measurement methodology developed by EMSS has been performed and resulted in an expanded uncertainty of 3.8 celled (dB). ADD STATE of the constraints of 3.8 celled (dB). ADD STATE of the constraints of 3.9 celled (dB). ADD STATE of the constraints of 3.9 celled (dB). ADD STATE of the constraints of 3.9 celled (dB). ADD STATE of the constraints of 3.9 celled (dB). ADD STATE of the constraints of the constraints of the constraints are also and the constraints of the c

Page 5 of 5

For more information, contact the BTA at: Tel: +287 395 7755 Fax: +287 395 7978 Email: engineering@bta.org.bw

> EMF Survey Report - Grand Pain Valid at: 28 October 2010

Why EMF Measurements?Example site: Report

Table 1: RF Exposure Levels at Measurement Positions

Measured On	No.	Position	Total Exposure	GSM900 DL	GSM1800 DL	UMTS DL	Others
2010/08/30 16:33	1	At the entrance of the Grand Palm Resort.	0.0354%	0.0235%	0.0004%	0.0005%	0.0110%
2010/08/30 16:48	N	On the 6th floor in the guest lift room.	0.0238%	0.0026%	0.0001%	0.0001%	0.0210%
2010/08/30 15:57	з	On the 6th floor in the service lift room.	1.0578%	1.0396%	0.0020%	0.0039%	0.0123%
2010/08/30 16:10	4	in line with antenna, along the second drive way from entrance.	0.2212%	0.2089%	0.0008%	0.0004%	0.0111%
2010/08/30 18:17	5	in line with antenna, next to swimming pool at the back of the hotel.	0.0597%	0.0483%	0.0000%	0.0001%	0.0113%
2010/08/30 18:24	6	in line with antenna, on the rocky outcrop close to the pond, behind the hotel.	0.0191%	0.0078%	0.0001%	0.0001%	0.0112%
2010/08/30 16:32	7	in line with antenna, in the maintenance yard east of building.	0.0388%	0.0258%	0.0001%	0.0002%	0.0127%
2010/08/30 18:44	8	In line with antenna, at the maintenance offices.	0.0391%	0.0271%	0.0000%	0.0004%	0.0115%

Why EMF Measurements?

Determine compliance boundary
 Radar, TV, etc installations
 Not covered in this talk

Why EMF Measurements?EMSS Overview

RF fields in our environment

Guidelines for safe exposure

Typical exposure vs guidelines

Cellular Networks

EMSS Overview

- Based in Stellenbosch, South Africa
- Focus on electromagnetics
- Non EMF safety activities
 - FEKO
 - Radio Astronomy Karoo Array Telescope

EMSS Overview

- Products and services in the field of EMF Safety
 - Ixus Compliance Software
 - fieldSENSE

- Site assessment and certification
- RF awareness training
- EMF Measurements

Why EMF Measurements?EMSS Overview

RF fields in our environment

Guidelines for safe exposureTypical exposure vs guidelines

Cellular Networks

Radio Frequency Fields in Our Environment TV

Base Stations

Radio

Microwave Ovens

Comms in Vehicles

Radio Frequency Fields in Our Environment

Radio Frequency Fields in Our Environment

Radio Frequency Fields in Our Environment

Cellular communications

Why EMF Measurements?EMSS Overview

RF fields in our environment

Guidelines for safe exposure

Typical exposure vs guidelines

Cellular Networks

ICNIRP

International Commission on Non-Ionizing Radiation Protection

- De facto standard for RF safety
- Endorsed by World Health Organization (WHO) and numerous other international health bodies
- Thousands of Research Studies (since 1950s)
- Intense periods of research: 1970s (Microwave Oven), 1990s (Mobiles)

- Basic restrictions Protect against heating (Known health effect)
- Two Tiers
 - Occupational, Safety factor of 10, RF trained, medically screened
 - General public, Safety factor of 50

At mobile frequencies:
 Basic restrictions (W/kg) not easily measured in field

At mobile frequencies:

- Thus "reference levels" (V/m or W/m²) derived from basic restrictions
- Measurements in terms of the "reference levels"

Why EMF Measurements?EMSS Overview

RF fields in our environment

Guidelines for safe exposure

Typical exposure vs guidelines

Cellular Networks

Typical Exposure vs Guidelines

Typical Exposure vs Guidelines

More than 77 000 measurements

Why EMF Measurements?EMSS Overview

RF fields in our environment

Guidelines for safe exposure

Typical exposure vs guidelines

Cellular Networks

First mobile?
Analog wireless phone took of in 70s
GSM early 90s

- Maximum of 60W per polarization on GSM900 on each antenna
- Typical transmit power levels

- "Low" power transmitters (60W)
 Short distances between base station sites
 - 2 way communication with 2W cellphones
- Avoid interference
 - Use relatively low power

Compared to TV / Radio high power transmitters (50kW)

One site, one way communication

Evolution

- First generation (1G) Analog
- Second generation (2G) Digital
- Third generation (3G) Digital & additional data services eg video calling

First generation (1G)

- Analog
- Separate Frequencies
- FDMA Frequency Division Multiple Access

- Second generation (2G)
 - Digital
 - Time Division Multiple Access
 - BCCH channel (Broadcast & Control)

- Adaptive Power Control 2G site call capacity Each Transceiver 8 timeslots Assume each sector 4 transceivers 8*4 timeslots; at least 1 for BCCH =>32-1 calls Site has 3 sectors
 - $\Rightarrow =>31 * 3$ calls

Cellular networks

Third generation (3G)
Digital & additional data services eg video calling

Code Division Multiple Access

Cellular networks

Sources

- www.nmscommunications.com
- www.attws.com
- www.wikipedia.org

Content

Measurement Equipment

- Measurement Methodology
- Demo
- Reporting
- Uncertainty analysis

Exclusions

Two types of measurement devices Broadband meters Cannot differentiate between different sources Frequency selective Spectrum analyser Differentiate different sources Choose spectrum analyser

Spectrum analyser
Differentiate different sources
Generally better for low signal levels

Overview	
Frequency versus 7	fime Domain
Amplitude	
(power)	1 frequency
N	n AAA
1	ANU I
Anas	
LUXAN	- Um
	The L
ne domain	Frequency Domain
isurements	Measurements
EWLETT	Jonatum Materia Davas

Isotropic probe (antenna) – Not directional

 Want to allocate service or operators to spectrum parts

Straight forward, since spectrum analyser differentiates between different sources

Integrate spectrum results to give exposure per service/operator

Battery: Mode: Meas.Range:	Safety Evaluation Cb 2.8 V/m	t: 3AX 75M-3G Wireless UK II: SRM 1.5m	Full screen
Service Vodafone 02	Value 5.320 mV/m 4.153 mV/m	Frequency 925.200 MHz to 930.000 MHz 930.200 MHz to 935.000 MHz	Cond. Table
Vodafone 02 Vodafone 02 02 Vodafone T-Mobile Orange	4.545 mV/m 54.39 mV/m 30.69 mV/m 45.27 mV/m 5.241 mV/m 5.474 mV/m 68.23 mV/m 52.15 mV/m	935.200 MHz to 939.800 MHz 940.000 MHz to 947.200 MHz 947.400 MHz to 955.000 MHz 955.200 MHz to 960.000 MHz 1805.200 MHz to 1810.800 MHz 1811.000 MHz to 1816.600 MHz 1816.800 MHz to 1846.600 MHz 1846.800 MHz to 1876.600 MHz	
TIW Total Isotropi Fmin: 9: Fmax: 2.10 RBVV: 1.M	9.44 mV/m 136.7 mV/m c result 25.2 MHz 39 7 GHz IHz(Auto) Result	2110.300 MHz to 2124.900 MHz 925.200 MHz to 2169.700 MHz Process Time: 1.607 s No. of Runs: 7 ACT	

BTA Spectrum allocation used

Lower Frequency 🗾 🔽	Upper Frequency 🗾 🔽	Name 🔽
27 MHz	88MHz	Below FM
88 MHz	108 MHz	FM Radio
108 MHz	117.975 MHz	Aeronautical Radionavagation
117.975 MHz	136.00 MHz	Aeronautical Mobile (R)
138.00 MHz	143.7 MHz	Alarms
146.00 MHz	174.00 MHz	Land Mobile
380.00 MHz	395.00 MHz	TETRA
410.4 MHz	424.9 MHz	Public Trucking
880 MHz	915 MHz	GSM900UL
935.2 MHz	943.2 MHz	GSM900DL Mascom
943.2 MHz	951.4 MHz	GSM900DL Orange
951.4 MHz	955.6 MHz	GSM900DL BTC
1.71 GHz	1.785 GHz	DCS1800 UL
1.8052 GHz	1.8154 GHz	DCS1800DLMascom
1.8154 GHz	1.8258 GHz	DCS1800DLOrange
1.8258 GHz	1.8298 GHz	DCS1800 DL BTC
1.92 GHz	1.98 GHz	UMTS UL
2.125 GHz	2.14 GHz	UMTSDL Orange
2.14 GHz	2.155 GHz	UMTSDL BTC
2.155 GHz	2.17 GHz	UMTSDL Mascom
2 995MHz	3 000MHz	3GHz Band

Various devices available

 Narda SRM3000 - old model
Narda SRM3006 - built in GPS
Calibration frequency: 2 years
Expanded measurement uncertainty: 3.7dB

> narda Safety Test Solutions

Equipment demo

- Spectrum measurement
- GSM power control
- W-CDMA demodulation 2157.4MHz
- Tabled results Safety table

Content

Measurement Equipment

Measurement Methodology

Demo

Reporting

Uncertainty analysis

Exclusions

Choosing measurement positions

- Publicly accessible positions
- Points of local maximum exposure
- Points of specific interest
- Typically 6-10 points per site

Measurement Methodology Sectorized site example No Area Ccess Houses Houses **P**3 ₽5 P4 🗙 Playground Houses Entrance Ρ̈́7 Shopping D Centre Creche

Gaborone, Botswana, 25-26 July 2011

52

Choosing measurement positions
Publicly accessible positions
Normally well outside exclusion zones

Choosing measurement positions
Points of local maximum exposure
In sector lines, where mainlobe hits the ground

Choosing measurement positions

- Typically 6-10 points per site
- I Position at site location
- Sector line positions
- Positions of specific interest

Example positions

Example positions

Example positions

Example positions

Example positions

IEC 62232

 Evaluation purpose
RF field strength for interested parties at arbitrary locations outside control boundary

RBS category

Simple or complex (multiple antenna & operator) RBS

Information availability
Spectrum licensing info available, etc

Parameter control
RBS not controlled (BCCH and traffic)

Ambient sources
Visual inspection
Spectrum measurement

Source-Environment plane
Source region III (Far field)
Environment region 0,1,M due to possible reflections

Gaborone, Botswana, 25-26 July 2011

Evaluation method E-Field (V/m) or Power Density (W/m²)

- In situ measurements used
 - Client requirements / physical demonstration for interested persons
 - Publicly accessible areas chosen for evaluation locations
 - Use handheld instrument at 1.5m
 - Sweep area, searching maximum
 - Spatial averaging not used
 - Frequency selective measurement (not broadband flat or shaped)

Evaluate in terms of limit

- Extrapolation might be required
- Extrapolate from BCCH / CPICH for maximum transmission possible
- Reporting
- Uncertainty assessment

Content

Measurement Equipment

Measurement Methodology

Demo

Reporting

Uncertainty analysis

Exclusions

Demo

Content

Measurement Equipment

Measurement Methodology

Demo

Reporting

Uncertainty analysis

Exclusions

Reporting

Procedure automated in Ixus

- Improve accuracy & efficiency
- Data stored on central database

Reporting

New Base Station 👔 Find Base Station 📝 Administra

IXUS

CUSTOM FOLDER Maps

Base Station Hilltop - 01234

Procedure Pre-processing

Measurement

You are lopped in an admin 🔠 Your Account and Settings 🛃 I

ownized al

Reporting

Procedure

- Post-processing
 - Front page photo
 - Мар
 - Position comments
 - PDF report

Introduction

As part of an electromagnetic measurement survey program of base station installations performed by the Botswana Telecommunications Authority (BTA), measurements were performed at Grand Palm. The aim of the survey was to measure the electromagnetic exposure levels at various positions around the base station.

Measured results are compared to the guidelines of limiting exposure proposed by the International Commission on Non-Ionizing Radiation Protection (ICNIRP).

Measured Results

Table 1 and Figure 1 presents the measured positions and exposure levels in terms of a percentage of the ICNIRP guidelines, where a 100% value would indicate that the safe exposure limit for the General Public has been reached. The total exposure is given in the first column of the table. Since the aim of the survey was to measure the typical exposure values, the reported results are un-extrapolated peak field instantaneous exposure results, at the specific date and time of the measurement survey.

Summary of Results & Conclusion

For the measured results presented in this report a 100% value would indicate that the ICNIRP exposure limit for the General Public has been reached. The highest value measured is 1.0578% of the ICNIRP General Public guidelines and was obtained at position 3. This is more than 90 times below the General Public limit.

Page 2 of 5

Measured On	No.	Position	Total Exposure	GSM900 DL	GSM1800 DL	UMTS Dl	Others
2010/08/30 15:33	1	At the entrance of the Grand Palm Resort.	0.0354%	0.0235%	0.0004%	0.0005%	0.0110%
2010/08/30 15:48	2	On the 6th floor in the guest lift room.	0.0238%	0.0026%	0.0001%	0.0001%	0.0210%
2010/08/30 15:57	3	On the 6th floor in the service lift room.	1.0578%	1.0396%	0.0020%	0.0039%	0.0123%
2010/08/30 16:10	4	In line with antenna, along the second drive way from entrance.	0.2212%	0.2089%	0.0008%	0.0004%	0.0111%
2010/08/30 16:17	5	In line with antenna, next to swimming pool at the back of the hotel.	0.0597%	0.0483%	0.0000%	0.0001%	0.0113%
2010/08/30 16:24	6	In line with antenna, on the rocky outcrop close to the pond, behind the hotel.	0.0191%	0.0078%	0.0001%	0.0001%	0.0112%
2010/08/30 16:32	7	In line with antenna, in the maintenance yard east of building.	0.0388%	0.0258%	0.0001%	0.0002%	0.0127%
2010/08/30 16:44	8	In line with antenna, at the maintenance offices.	0.0391%	0.0271%	0.0000%	0.0004%	0.0115%

Table 1: RF Exposure Levels at Measurement Positions

Page 3 of 5

Measurement Equipment and Methodology

Both survey meter and probe must be calibrated on a regular basis. The calibration status is presented in the following table.

Survey Meter:	Narda SRM 3000 Selective Radiation	Calibration	Valid calibration:
	Meter, S/N: G-0113	Status:	17 September 2008
Probe:	Narda BN 3501 Three-Axis E-Field	Calibration	Valid calibration:
	Probe, S/N: J-0019	Status:	26 February 2009

Assessment Process and Software

The assessment process, software and training were developed by EMSS Consulting (EMSS). EMSS has expertise in the field of human exposure assessment to radiofrequency fields.

BTA engineers were trained by EMSS to perform measurements in accordance with the measurement protocol of the CENELEC 50492 (November 2008) standard for the in-situ measurement of electromagnetic field strength related to human exposure in the vicinity of base stations. The CENELEC 50492 standard requires an uncertainty assessment to be performed when extrapolation is not used to address maximum traffic. A full uncertainty analysis for the measurement methodology developed by EMSS has been performed and resulted in an expanded uncertainty of 3.8 decibel (dB).

Additional survey information, typically shown in a CENELEC 50492 report, is available from BTA on request.

For more information, contact the BTA at: Tel: +267 395 7755 Fax: +267 395 7976 Email: engineering@bta.org.bw

Page 5 of 5

Content

Measurement Equipment

Measurement Methodology

Demo

Reporting

Uncertainty analysis

Exclusions

Uncertainty analysis

Important to assess the uncertainty, when interpreting results

Uncertainty Source	Description	Uncertainty value (%)	Probability distribution	Divisor	Ci	Standard Uncertainty (%)
Measurement Equipment						
Calibration	Manufacturer calibration certificate values used, Verified at accredited calibration lab within 1dB Measurement Uncertainty	41.25 % (1.5 dB)	Normal	K=2	1	20.625 %
lsotropy	Ellipse Ratio according to Manufacturer's data sheet	34 % (1.27 dB)	Rectangular	√3	1	19.63 %
Linearity	Manufacturer's data sheet: 25 Frequency points through complete f range, measurement range settings -27 -> 23 dBm	4 % (0.17 dB)	Rectangular	√3	1	2.31 %

Uncertainty analysis

Physical parameters						
Drifts in output power of probe (Temperature and Humidity)	Not measured before, assume within temperature range of Manufacturer's data sheet to be corrected	0 %	Rectangular	√3	1	0 %
Pertubation by the Environment	Influence of Probe ~0.5m in front of surveyor. Use CENELEC Annex G results from simulation (worst case) in cellular band	58.5 % (2 dB)	Rectangular	√3	1	33.77 %
Influence quantities for environmental field characteristics						
Spatial Averaging	Statistical uncertainty with a 95 % confidence interval for a 1-point grid as per CENELEC	90.55 % (2.8 dB)	Rectangular	√3	1	52.28 %

Uncertainty analysis

Post Processing						
Extrapolation for maximum traffic	BCCH and UMTS Pilot channels are used to obtain maximum output power. Technical information obtained from operators	0 %	Rectangular	√3	1	0 %

Combined Standard uncertainties	$\sqrt{\sum_{i=1}^m c_i^2 \cdot u_i^2}$	68.48 % (2.27 dB)			
Expanded uncertainty (confidence interval of 95%)	u _e = 1.96 u _c	134.22 % (3.70 dB)	Normal		

Content

Measurement Equipment

Measurement Methodology

Demo

Reporting

Uncertainty analysis

Exclusions

Exclusions

Determine compliance boundary

- Extrapolation for maximum
- Region I (Reactive near-field)

Exclusions

 Radar installations
Time on Target -> Peak or RMS relevant
Probe displayed value needs correction, based on radar PRF, Duty cycle

Content

Base station Compliance

Conclusion

- Assess accessibility of EMF Exclusion zones
 - Generic rules

Figure 1. Generic Public exclusion zone

Assess accessibility of EMF Exclusion zones

Numerical simulation

Assess accessibility of EMF Exclusion zones

Measurements

Administrative controls Access control RF warning signage

Use Ixus to manage network compliance ICNIRP Compliance Identify RF Monitor Controls Hazard Zones at and Document C i 🖅 Process Controls to Avoid **Over-Exposure** EMSS Access Control, **RF** Awareness Signage, Painted Training EMF Site Access Procedures

Content

Base station Compliance

Conclusion

Conclusion

Introduction

As part of an electromagnetic measurement survey program of base station installations performed by the Botswana Telecommunications Authority (BTA), measurements were performed at Grand Palm. The aim of the survey was to measure the electromagnetic exposure levels at various positions around the base station.

Measured results are compared to the guidelines of limiting exposure proposed by the International Commission on Non-Ionizing Radiation Protection (ICNIRP).

Measured Results

Table 1 and Figure 1 presents the measured positions and exposure levels in terms of a screentage of the ACHIEP pusisities, where a 100% value would indice that the safe exposure limit for the General Public has been reached. The total exposure is given in the first column of the table. Since the aim of the survey work to measure the typical exposure values, the reported results are un-estrapolated peak field instantaneous exposure results, at the specific date and time of the measurement survey.

Summary of Results & Conclusion

EMIF Sunwy Report - Grand Pain Valid at: 28 October 2010

For the measured results presented in this report a 100% value would indicate that the ICNIRP exposure limit for the General Public has been reached. The highest value measured is 1.0578% of the ICNIRP General Public guidelines and was obtained at position 3. This is more than 90 times below the General Public limit.

Page 4 of 5

Table 1: RF Exposure Levels at Measurement Positions

Measured On	No.	Position	Total Exposure	GSM900 DL	GSM1800 DL	UMTS DL	Others	
2010/08/30 16:33	1	At the entrance of the Grand Paim Resort.	0.0354%	0.0235%	0.0004%	0.0005%	0.0110%	
2010/08/30 16:48	2	On the 6th floor in the guest lift room.	0.0238%	0.0026%	0.0001%	0.0001%	0.0210%	
2010/08/30 16:67	3	On the 6th floor in the service lift room.	1.0578%	1.0396%	0.0020%	0.0039%	0.0123%	
2010/08/30 16:10	4	In line with antenna, along the second drive way from entrance.	0.2212%	0.2089%	0.0008%	0.0004%	0.0111%	
2010/08/30 18:17	5	In line with antenna, next to swimming pool at the back of the hotel.	0.0597%	0.0483%	0.0000%	0.0001%	0.0113%	
2010/08/30 16:24	6	In line with antenna, on the rocky outcrop close to the pond, behind the hotel.	0.019196	0.0078%	0.0001%	0.0001%	0.0112%	
2010/08/30 16:32	7	In line with antenna, in the maintenance yard east of building.	0.0388%	0.0258%	0.0001%	0.0002%	0.0127%	
2010/08/30 16:44	8	In line with antenna, at the maintenance offices.	0.0391%	0.0271%	0.0000%	0.0004%	0.0115%	

Measurement Equipment and Methodology

Both survey meter and probe must be calibrated on a regular basis. The calibration status is presented in the following table.

Survey Meter:	Narda SRM 3000 Selective Radiation	Calibration	Valid calibration:
	Meter, S/N: G-0113	Status:	17 September 2008
Probe:	Narda BN 3501 Three-Axis E-Field	Calibration	Valid calibration:
	Probe, S/N: J-0019	Status:	26 February 2009

Assessment Process and Software

Assessment Process and Software The assessment process, software and training were developed by EMSS Consulting (EMSS). EMSS has expertise in the field of human exposure assessment to radio-frequency field. BTA engineers were trained by EMSS to perform measurements in accordance with the measurement protocol of the CENEE C6442 (women's 2006) standard for the in-stu measurement of electromagnetic field strength nelated to human exposure in the violity of base stations. The CENEE C5 GV42 (water and increasing an uncertainty assessment to be set assessments of electromagnetic field strength nelated to human exposure in the violity of base stations. The CENEE C5 GV42 (women's an uncertainty assessment to be paraligins for the measurement methodology developed by EMSS has been performed and candidation, spicially shown in a CENEELEC 50492 report, is available from BTA on request.

from BTA on request

Tel: +267 395 7 Fax: +267 395 Email: enginee	755 7976 ring@bta.org.bw		
& 	IF Survey Report - Grand Palm Id at: 28 October 2010	Page 5 of 5	

Thank you

Questions?

mvanwyk@emss.co.za

