Name: APEREC022V01

Description:

3.

Type: Earth station, Receiving

Region(s): 13

Required Input Parameters:

gain

Validation Warnings/Errors:

Туре	Message
Error Gr	Gmax () is less than G1 (). Square root of negative value.
Error Ph	Phir () is less than Phim ().
Error Ph	Phi2 () is less than Phi1 ().
Error 0 (0 () is less than S ().
Error D/I	D/lambda () is less than 32 ().

Pattern Information:

Pattern is apllied only for D/lambda > 32. BR software sets antenna efficiency to 0.7 for technical examination.

Co-Polar Component:

If $D/\lambda \ge 32$:

$J/L \ge 32$.				
$G = G_{max} - 2.5 \times 10^{-3} (D/\lambda \phi)^2$	for	$0^{\circ} \leq \phi < \phi_m$		
$G = G_1$	for	$\phi_{m} \leq \phi < \phi_{r}$		
$G = 29 - 25 \log \varphi$	for	$\phi_{\text{r}} \leq \phi < \phi_{\text{b}}$		
G = -5	for	$\phi_{\text{b}} \leq \phi < 70^{\circ}$		
G = 0	for	$70^\circ \le \phi \le 180^\circ$		

where:

$$\begin{split} D/\lambda &= \sqrt{\frac{10^{\left(\frac{G_{max}}{10}\right)}}{\eta\pi^2}}~.\\ \phi_m &= 20~\lambda/D~\sqrt{G_{max}-G_1}~.\\ \phi_r &= 95~\lambda/D.\\ G_1 &= 29-25~log~\phi_r.\\ \phi_b &= 10^{\left(\frac{34}{25}\right)}. \end{split}$$

Cross-Polar Component:

$G_x = G_{max} - 17$	for	$0^{\circ} \leq \phi < \ \phi_0$
$G_x = G_{max} - 17 + S \left \frac{\phi - \phi_0}{\phi_1 - \phi_0} \right $	for	$\phi_0 \leq \phi < \phi_1$
$G_x = 21 - 25 \log \phi$	for	$\phi_1 \leq \phi < \phi_2$
$G_x = -5$	for	$\phi_2~\leq~\phi~<~70^\circ$
$G_x = 0$	for	$70^\circ \le \ \phi \ \le \ 180^\circ$

Recommendation ITU-R BO.1900 reference receiving earth station

antenna pattern for BSS in the band 21.4-22 GHz in Regions 1 and

where:

 $S = 21 - 25 \log \phi_1 - (G_{max} - 17),$

the value of S must be less than 0

for any combination of antenna efficiency (η) and D/λ .

$$\phi_0 = 2 \ \lambda / D \ \sqrt{\frac{3}{0.0025}} \ ,$$
$$\phi_1 = \frac{\phi_0}{2} \ \sqrt{10.1875} \ .$$
$$\phi_2 = 10^{\left(\frac{26}{25}\right)} \ .$$