If retrospect

Considerations for Risk Frameworks Relating to Vehicle Control

Prepared for: FG-AI4AD – 16 SEP 2020

Prepared by: Michael Woon, Retrospect

Driving Autonomous Vehicle Safety

Agenda

Topics

Motivation Why Risk?

What is "Risk?"

Safety Argumentation

Ethics and AVs

Ir retrospect Motivation

Motivation

- + Product Liability
- + Public Safety
- + Realize commercial opportunities
- + Fullfilment of well-trusted safety standards, e.g. ISO 26262, IEC 61508

"Today, neither industry nor government can assess the safety of self-driving cars"

- EE Times, 'A Wave of Safety Standards to Hit in 2020' [3]

"NTSB has recommended ... more testing and proof of safety before large numbers of vehicles are allowed on public roads" – Consumer Reports, 'Congress Debates Autonomous Vehicles Car Safety' [2]

"U.S. secretary for policy at the U.S. Department of Transportation, stressed the need for objective and agreedupon measures of driverless systems performance" - Venture Beat, 'Autonomous Cars Need better safety metrics to move the industry forward' [1]

^{1. &}lt;u>https://venturebeat-com.cdn.ampproject.org/c/s/venturebeat.com/2020/01/10/ai-weekly-autonomous-cars-need-better-safety-metrics-to-move-the-industry-forward/amp/</u>

^{2. &}lt;u>https://www.consumerreports.org/autonomous-driving/congress-debates-autonomous-vehicles-car-safety/</u>

^{3. &}lt;u>https://www.eetimes.com/a-wave-of-av-safety-standards-to-hit-in-2020/</u>

Agenda

Topics

Motivation

Why Risk?

What is "Risk?"

Safety Argumentation

Ethics and AVs

lí retrospect Why Risk?

Risk Model Applications

- + Path planning optimization / cost structuring
- + Path planning constraints
- + Scenario identification & classification
- + Safety monitoring

Trajectory

Risk

Trajectory

Retrospect's Safety Monitoring Approach

Command Authority for Autonomous Safety

LYAPUNOV STABILITY

Agenda

Topics

Motivation

Why Risk?

What is "Risk?"

Safety Argumentation

Ethics and AVs

lí retrospect What is "Risk?" Risk

Reference: The Quantitative Risk Norm - A Proposed Tailoring of HARA for ADS Warg, Johansson, Skoglund, et al. Proceedings of 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)

ISO 26262: "combination of the probability of...

"<u>physical injury or damage</u> <u>to the health of persons...</u>

[and] "estimate of the <u>extent</u> of harm..."

Hazard Mechanisms

Collision – e.g. front impact, side impact, VRU impact

Roll-over

Jostle / Shake e.g. harmful transient control (oscillatory or high jerk), whiplash, bruising

Crush – underneath wheels, pinch point between parked cars

Exhaust (CO) poisoning

Obstructing emergency access, emergency responders

Surprise / Startle and subsequent unintended reaction

Etc., ...

Hazard Mechanisms

Collision	Delta velocity, mass, contact areas
Roll-over	Lateral accel, track width, road surface, wind?
Jostle / Shake	Lateral & Long. accel frequency and magnitude
Crush	Proximity (wheels, bumpers) and Long. force
Exhaust (CO) poisoning	Enclosed volume
Obstructing	Proximity
Surprise / Startle	Transients Lateral & Long., proximity, Delta velocity
Etc.,	

Collision Risk

Combination of the **probability** of physical injury or damage to the health of persons and estimate of the extent of harm..."

Delta-V → Injury: Slight, Serious, Fatal

Frontal Impact

Side Impact

Pedestrian

Figure 2.6: Cumulative impact speed for pedestrian casualties in the OTS and police fatal file dataset All ages, pedestrian impacts with front of cars Slight (n = 57) — Serious (n = 74) — Fatal (n = 66) severity 100% 90% 80% ď 70% 60% 50% 40% Der 30% Cumulative 20% 10% 0% 10 20 30 40 50 60 70 Impact speed (mph)

Source: NACTO Road Safety Web Publication No. 16 Relationship between Speed and Risk of Fatal Injury: Pedestrians and Car Occupants, D. C. Richards. Transport Research Laboratory, September 2010, Department for Transport: London

Delta-V: Impact Velocity, Pre/Post Velocities, and Peak Acc.

Delta-V from Universal Scenario Definition

- Applies to: Scenario definitions, simulation "gnd truth," track / road tests, path planning internal to AV stack
- Frontal, Side, Pedestrian collision
- Accounts for worst-case mass/momentum

Step 2: Does $\overrightarrow{v_0}$ contribute to

 $\| \overrightarrow{v_{\rho}} \|$

 $\perp \overline{v_o}$

or negate the delta v?

Always generates a reciprocal Delta-V pair: between Ego and Object

Step 3: Calculate the delta v

Step 1: Does $\overrightarrow{v_e}$ point to any object?

Key:

- *e Position of EGO at instance, t*
- o Position of OBJECT at instance, t
- *v_e* Speed of EGO at instance, t
- *v*_o Speed of OBJECT at instance, t
- L_E Length of EGO
- *L_T Length of TRGT*

Source: https://github.com/RetrospectAV/RiskFramework/blob/master/RiskWiki.md

Delta-V from Universal Scenario Definition – Validation Efforts

- "Control-Neutral" approach to determining Delta-V; no assumed scenario
- What is the instantaneous momentum in the system? What if nobody did anything?
- Not reduced to time or distance domains

6

2

Source: www.levelxdata.com, fka GmbH

Delta-V Error and Uncertainty

All Data and Measurements have error tolerances (ε)

lí retrospect

Delta-V and Controllability

Apply probabilistic claims of Controllability / Predictability

< 1% Chance Uncontrolled *Potential: Planned:* $\Delta \vec{v} = 10 \ km/h$ $\Delta \vec{v} = 0.1 \, km/h$ > 99% Chance Controlled What is your control effort? What are your control limits? What is your confidence level on these? How far in development is the control platform? Is this well-trusted? Evidence? < 10% Chance Unpredictable *Planned:* $\Delta \vec{v} = 1,0 \ km/h$

> 90% Chance Predictable

- What is your confidence level?
- What is your argument?
- What are your predictors and how much experience do you have?

Risk – Layered Approach

Review What is "Risk?"

- + *Injury*: probability and severity
- + Collision risk: largely dictated by Delta-V
- + *Layers of risk:* Potential risk, Planned risk, Actual injury

Agenda

Topics

Motivation

Why Risk?

What is "Risk?"

Safety Argumentation

Ethics and AVs

Ir retrospect Safety Argumentation

Safety Argumentation

Apply probabilistic claims of Controllability / Predictability

Safety Argumentation

Underlying causes to Actual Injury are Observable in Risk Error

Safety Argumentation

Layer 1: Remove rounds Layer 2: Separate storage Layer 3: Safety On Layer 4: Don't aim at anything of value Layer 5: Trigger control / finger placed on barrel

Probability of fatality < 10e-9

Agenda

Topics

Motivation

Why Risk?

What is "Risk?"

Safety Argumentation

Ethics and AVs

Driving Autonomous Vehicle Safety

Ir retrospect Ethics and AVs

Ethics: No (Trolley) Problem

- **1. Superposition principle:** Each Risk recipient is accounted for and treated equally & based on first principles, limiting the max Risk
- 2. No subjective weighting: The only scaling can be done by objective argumentation & still treated conservatively

Ethics: No (Trolley) Problem

- **3.** Instantaneous, not integrated: Derived from first two, Risk is not normalized or weighted
- **4.** Accountable to Dev/Ops: Drivers are always responsible for driving within their limits, even AV Dev/Ops

lí retrospect

Challenges Ahead & Closing Thoughts

Thank You

Driving Autonomous Vehicle Safety

Michael Woon CEO, Founder +1 734 796 6026 michael.woon@retrospectav.com

Retrospect Consulting | 330 E Liberty, Lower Level | Ann Arbor, MI 48104 | connect@retrospectav.com | retrospectav.com