Energy Research Institute @ NTU

Determining perception range requirements from ODD and traffic conditions

2 December 2020

A reminder from the kickoff meeting...

■ Al should be held to same legal standards as human drivers

■ It starts with a universal assumption that all road users are; "aware, willing and able" to avoid collisions

- Meeting the minimum public expectation is that Al Drivers never engage in reckless, dangerous or careless driving...
- ...by comparing AI Driver performance to that expected of a competent and careful driver (with humans as the starting baseline)
- i.e.: It is possible to never have a collision and yet still drive very badly, and thus not meeting the minimum public expectation.

The type of image you see for sensor systems

(draft rejected) Guidelines for a minimum detection range vs speed

■ Speed should account for the current and upcoming range of object sensor detection and visibility to other road users. Ideally the range of object sensor detection shpuld always exceed the safe stopping distance of the vehicle (based on current speed). When faced with areas of occlusions or range restrictions, an AV shall react to reasonable worst-case assumptions of actors being present just outside of field of view. In the event that occlusions will not be satisfactorily removed witho ut forward motion, the AV should be allowed to creep forward at a reduced speed until the occlusions have been removed.

Two problems with this:

1) It assumes that that you are only responsible for not hitting others.
2) An emergency stop now or then is ok.

Problem observed: frequent takeover by safety driver

What has to be the range of the sensors on the bus?
(hint: It is not the braking distance of the blue car)

Double dashed line go when it is :

Problem observed: frequent takeover by safety driver
Signalled intersection

What are the traffic conditions here

- Bus
- To prevent standing passengers from falling
- It can only accelerate at maximum $1 \mathrm{~m} / \mathrm{s}^{2}$ once it is on the main road

■ It can only accelerate at around $0.5 \mathrm{~m} / \mathrm{s}^{2}$ max while turning on the main road

- It is probably maxed out at $35-40 \mathrm{kph}$ on the main road
- Car
- While the bus is accelerating on the main road
- It should not have brake for the bus
- It is reasonable to have to lift the throttle and reduce speed by about 20% if needed
- When the bus has reached its driving speed of 40 kph
- The car should slow down and follow the bus
- Distance to the bus should be at least $10-15 \mathrm{~m}$ (bus reduces forward visibility)

So what is the safe detection distance?

- Some assumptions:
- Bus acceleration at $0.5 \mathrm{~m} / \mathrm{s}^{2}$ for simplification
- Bus final speed is $36 \mathrm{kph}(10 \mathrm{~m} / \mathrm{s}$)
- Bus length is 10 m
- Car approaches at $54 \mathrm{kph}(15 \mathrm{~m} / \mathrm{s})$
- Car slows down to $36 \mathrm{kph}(10 \mathrm{~m} / \mathrm{s}$)
- Average speed for simplification is $12.5 \mathrm{~m} / \mathrm{s}$
- Final gap with bus is 10 m

Start situation

End situation

So what is the safe detection distance?

- Calculation
- Event duration is 20 sec

■ Bus will have moved 100 m

- Car will have moved 250 m
- Final gap is $10+10=20 \mathrm{~m}$ (front bus to front car)
- Detection distance $=250+20-100=170 \mathrm{~m}$

So what is the safe detection distance if it were 2 cars?

■ Some assumptions:

- Car 1 acceleration at $2 \mathrm{~m} / \mathrm{s}^{2}$ for simplification
- Car 1 final speed is $46.8 \mathrm{kph}(13 \mathrm{~m} / \mathrm{s})$
- Car 1 length is 5 m
- Car 2 approaches at $54 \mathrm{kph}(15 \mathrm{~m} / \mathrm{s})$
- Car 2 slows down to $46.8 \mathrm{kph}(13 \mathrm{~m} / \mathrm{s}$)
- Average speed for simplification is $14 \mathrm{~m} / \mathrm{s}$
- Final gap with car 1 is 10 m

So what is the safe detection distance if it were 2 cars?

- Calculation

■ Event duration is 6.5 sec

- Car 1 will have moved 39 m
- Car 2 will have moved 91 m
- Final gap is $10+5=15 \mathrm{~m}$
- Minimum detection distance $=91+15-25=81 \mathrm{~m}$

Lidar coverage example

Fig 6 and 7. A single sensor at an elevation of 2.4 m - Perspective view

Cause of problem of frequent takeover by safety driver

- Vehicle should be detected at 150 m minimum and probably closer to 200 m away to cater for all variables.
- However, if the range was 100 m it would probably not cause a dangerous situation, but you might not meet the "average driver" requirement.
- Actual perception range for the vehicle was less than 50 m (note: it was an early R\&D vehicle).
- Due to the road profile, even with a perfect sensor system, a 150 m range was not achievable.
- Requirements were all based on the need for the vehicle to brake in time for other traffic.
- No consideration was made for the vehicle to give way to other traffic.
- When calculated based on the need to be able to stop in time; the slower, the better
- When calculated based on the need to give way to other traffic; the slower, the bigger the problem
- The problem became obvious because of the amount of traffic on the main road: at least 50% of the time there would be a car which the vehicle would have to give way to.

Conclusions

- Speed differences are big issues and need to be taken care of.
- There needs to be a specific analysis of the ODD to analyze if the performance of the perception system is acceptable.
- Defining acceptable driving behaviour is very important.
- Adjusting driving behaviour could resolve issues with the perception system.
- It is unrealistic to expect that the AV always behaves like an exceptionally courteous drive, but if more than 50% of the time others have the brake (not necessarily hard braking), the vehicle is a less than average driver.
- Tradeoffs are needed and they will depend on developer, ODD and other factors.
- But if they are well defined and documented, it can be adjusted to address behavioural issues.

Thank you

