

Autonomous Driving Stochastic Adversarial Traffic and Unstructured Environments

Title: Role of Stochastic Traffic and Unstructured Environments in Achieving Safe and Scalable Autonomous Driving

Speaker: Sanjeev Sharma, Founder and CEO

Typical Autonomous Driving Model

Perception Algorithms

Build 3D representation of the worldDetect navigable and non-navigable regions

Planning and Control Algorithms

Compute motion and behaviour of the vehicleExecute motion and behaviour commands

Localization Algorithms

Compute global accurate position of the vehicle
 Use High-Fidelity Maps (HFMs) for inference
 Provide additional information layer:

 Road delimiters
 Lane markers and boundaries

Key Role of HFMs

Road and Lane Delimiters

#HFMs contain two key elements

- Road delimiters information
- Lane markers information

A sample HFM shown above

Projection of delimiters information from HFMs

Allows fail-safe determination of delimiters

🕈 Reason

- Real-time delimiters detection is challenging
- Environments can become unstructured robust detection becomes even harder

General Challenges

Perception

→ Cost Robustness, Accuracy, Computational Efficiency

🕫 Planning

→ Safety Unpredictable Events, Complex Traffic Dynamics, Multi-Agent Negotiation

Mapping and Localization

→ Scalability Algorithmic Efficiency, Infrastructure

Key Abstract Questions

How can we guarantee safety?

 \rightarrow Can we trust autonomous vehicles with our family and kids?

How do we assess the performance of algorithms?

- \rightarrow How can we evaluate the quality of perception technology?
- → How can we ensure that planning technology will react appropriately to unforeseeable environmental uncertainties?

What can be done to scale the technology rapidly?

- \rightarrow Can we eliminate the requirement of high-definition/fidelity maps?
- \rightarrow What are the kinds of algorithms required to achieve it?

Stochastic Traffic and Unstructured Environments

Perception

- → Contextual understanding of unstructured scenes
- → Absent or unclear delimiters

Planning and Controls

- → Structured highways often have complex traffic behaviour
- \rightarrow Irregularity is the only regularity

Hidden Challenges

- → Cost: Containing number of sensors and computational hardware
- → Increased amount of computations

Achieve Fundamental Objectives

Robustness and Reliability

→ Semantic and contextual understanding simplifies for relatively structured environments elsewhere

North America, Europe, Australia, Developed Asian and Middle East Countries

Safety Guarantees

 \rightarrow Almost every driving and traffic configuration is a corner case elsewhere

Perception | **Cost**

Robustness, Computational Efficiency, and Cost

Our Perception Research Focus

Structured & Unstructured Environments

Real-time inference capabilities

- Loss functions
- Novel compute functions for deep neural networks

 - Lower computations Computational Efficiency
 - Better generalization Accuracy

© Real-time delimiters prediction or generation

- Generation of Salient Delimiters
 - Faded
 - Absent
- Generation of Non-Salient Delimiters
 - Faded

Swaayatt Technology Highlights

f Technology Enabling Perception Using Cameras

> One of the 2-3 companies in the world to achieve it

for Computationally Efficient Semantic Segmentation Network

Works on both structured and unstructured roads

Computational Efficiency: 16-30x compared to the state-of-the-art algorithms

© Delimiters Prediction and Generation Ability

Enabling autonomous vehicles to deal with unstructured environments

All Terrain Free Space Detector

Enabling autonomous vehicles perceive both on- and off-roads
Significantly computationally efficient compared to similar technology developed elsewhere

© Obstacle Detection

Computational efficiency: 10x-43x compared to the state-of-the-art algorithms

Localization | Scalability

Infrastructure, Cost, and Time

Revisiting Mapping

Road and Lane Delimiters

f HFMs contain two key elements

- Road delimiters information
- Lane markers information

Projection of delimiters information from HFMs

Allows fail-safe determination of delimiters

🕈 Reason

- Real-time delimiters detection is challenging
- Environments can become unstructured robust detection becomes even harder

f Problems with this autonomous driving model and challenges

- > Inference against HFMs is computationally very expensive
- Remote server for computations infrastructure challenge!
- Mapping and managing maps is costly and time consuming
- Hinders rapid scale-up of autonomous driving

© Our Solution: Delimiters prediction and generation

- > Robust delimiters detection, with real-time prediction and generation of delimiters
- Enabling scalable autonomous driving (without HFMs)

Our Autonomous Driving Model

Perception Algorithms

Build 3D representation of the world

Detect navigable and non-navigable regions

Local Delimiters Relative Localization

- Local relative accurate positioning of the vehicle
 - Enabled via delimiters prediction / generation
- Use GPS maps to determine exits and turns
 - Can use semi-dense maps for urban navigation

Planning and Control Algorithms

Compute motion and behaviour of the vehicle

Execute motion and behaviour commands

Delimiters Prediction Research

Real-time inference capabilities

> For both detection and prediction (or generation)

f Real-time delimiters prediction or generation

- Generation of Salient Delimiters with Static or Temporal Information
 - Faded
 - Absent
- Generation of Non-Salient Delimiters with Temporal Information
 - Faded

© Result: Lane Detection and Generation Algorithm

Enabling autonomous driving and lane keeping (ADAS feature) even in unstructured environments

Lane Detection and Generation

for Computations: Under 12.75 GFlops

> Simultaneous detection and generation

f Key Features | Advantages

- Detects roads boundaries and lane markers
- Generates such delimiters in they are faded or absent on road

Sample Demo

Planning | Safety

Unforeseeable Events, Complex Traffic Dynamics

Planning Research

Stochastic traffic negotiation

> Traffic dynamics as stochastic as Indian traffic Dynamics

Multi-Agent Intent Analysis and Negotiation

- > Adversarial stochastic agents
- Super-linear scale up vs exponential explosion in computations

Tight Space Negotiation

High-speed cluttered highway negotiation; Overtaking negotiation and abortion decisions
Uncertain and chaotic dynamic tight space negotiation

for the main of the main

Ability to quickly react to adversarial situations

f Intelligent frameworks for end-to-end navigation in unknown environments

Play a key role in navigation in unmapped environments

Key Highlight

Multi-Agent Negotiation and Intent Analysis

Key Learnings

Safety in stochastic traffic of India ensures safe operations elsewhere

- Elsewhere, traffic is significantly much more structured
- Almost every driving scenario is a corner case for the industry at large

f Technology for unstructured environments will lead to robustness elsewhere

Guarantees fail-safe operation in structured or partially-unstructured environments
 Algorithms having enhanced ability to contextually understand the environments

***** Byproduct: Innovation in other departments of autonomous driving

Delimiters prediction, as an instance – Localization & Mapping, and Perception

