Methodologies for evaluation and complexity assessment of neural network-based coding technology in JVET and JPEG

DR. ELENA ALSHINA HUAWEI TECHNOLOGIES, GERMANY 18-01-2022

# Common (*training*) test conditions == "rules of the game"

#### JPEG AI:

#### wg1n100058-ICQ-JPEG AI Common Training and Test Conditions

- Anchors, metrics, rates, training, Standard reconstruction task assessment, CV task assessment, Image Enhancement task assessment
- ISO/IEC JTC 1/SC29/WG1 N100013, REQ "JPEG AI Third Draft Call for Proposals"
  - "Device interoperability requirement states that performance difference between submission operating in different platforms should not be greater than 0.5% BD-rate. While it is accepted to not meet this requirement for the CfP submission, it is mandatory to be met for inclusion in the WD/CD and reference software. "
- <u>https://gitlab.com/wg1/jpeg-ai/jpeg-ai-qaf</u> (public)
- <u>https://gitlab.com/wg1/jpeg-ai/jpeg-ai-anchors</u> (public)

#### JVET AhG11 (NNVC):

- <u>JVET-X2016</u> Common Test Conditions and evaluation procedures for neural network-based video coding technology
  - Anchors, metrics, rates, training data, complexity assessment, results reporting template
- <u>JVET-X0188</u> BoG Report: EE1 Viewing Preparation and Neural Networks Video Coding Results Analysis
- <u>JVET-W0182</u> BoG Report: Neural Networks Video Coding Analysis and Planning
  - Realistic complexity, "... the training step would be cross-checked at that point to confirm that the training can be reproduced..."
- <u>https://vcgit.hhi.fraunhofer.de/jvet-ahg-nnvc/nnvcctc</u> (SC 29 password)

### **Quality Metrics**



#### Classic

Classic

AI



# Quality metrics in JPEG AI

[PDF] from epfl.ch

#### Performance Evaluation of Objective Image Quality Metrics on Conventional and Learning-Based **Compression Artifacts**

Michela Testolina Evgeniy Upenik Multimedia Signal Processing Group Multimedia Signal Processing Group Instituto Superior Técnico, Universidade École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland michela.testolina@epfl.ch

École Polytechnique Fédérale de Lisboa - Instituto de Telecomunicações de Lausanne (EPFL) Lisbon, Portugal Lausanne, Switzerland joao.ascenso@lx.it.pt evgeniy.upenik@epfl.ch

João Ascenso

Fernando Pereira Instituto Superior Técnico, Universidade de Lisboa - Instituto de Telecomunicações Lisbon, Portugal fp@lx.it.pt

Touradi Ebrahimi Multimedia Signal Processing Group École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland touradj.ebrahimi@epfl.ch

| Metric      | Paper | Reference Link                                                                                                 | Color<br>Space |
|-------------|-------|----------------------------------------------------------------------------------------------------------------|----------------|
| PSNR        |       | https://uk.mathworks.com/help/images/ref/psnr.html                                                             | Y              |
| SSIM        | [4]   | https://www.cns.nyu.edu/~lcv/ssim/                                                                             | Y              |
| MS-SSIM     | [5]   | https://ece.uwaterloo.ca/~z70wang/research/iwssim/                                                             | Y              |
| IW-SSIM     | [6]   | https://ece.uwaterloo.ca/~z70wang/research/iwssim/                                                             | Y              |
| VIF(P)      | [7]   | https://live.ece.utexas.edu/research/Quality/VIF.htm                                                           | Y              |
| VDP2        | [8]   | https://sourceforge.net/projects/hdrvdp/files/hdrvdp/2.2.1/                                                    | RGB            |
| FSIM        | [9]   | https://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm                                                     | Y              |
| NLPD        | [10]  | https://www.cns.nyu.edu/~lcv/NLPyr/                                                                            | Y              |
| CIEDE2000   | [11]  | http://www2.ece.rochester.edu/~gsharma/ciede2000/                                                              | Lab            |
| Butteraugli |       | https://gitlab.com/wg1/jpeg-xl                                                                                 | RGB            |
| WaDIQaM     | [12]  | https://github.com/dmaniry/deepIQA                                                                             | RGB            |
| VMAF        |       | https://github.com/Netflix/vmaf/blob/master/resource/doc/references.md                                         | YUV            |
| LPIPS       | [13]  | https://github.com/richzhang/PerceptualSimilarity#1-learned-perceptual-image-<br>patch-similarity-lpips-metric | RGB            |
| PSNR-HSV-M  | [14]  | http://www.ponomarenko.info/psnrhvsm.htm                                                                       | Y              |

Only reasonably well correlated with visual quality metrics have been selected to be included into

#### CTTC



0.2

0.4

0.6

0.8

0.8

1

0.6

1

VDP2 VIF(P) Y VMAF WaDIQaM LIVE weight WaDIQaM TID weigh

0

SSIM Y

WaDIQaM TID weigh

0

0.2

0.4

Butteraugli (3norm) CIEDE2000

AI



#### "classical" vs "Al" artifacts in JPEG Al



...form JPEG AI CfE....

VTM anchor

VTM anchor + NN-based in-loop filter

### "classical" vs "Al" artifacts in JVET NNVC

VTM anchor + NN-based super-resolution

#### "classical" vs "Al" artifacts in JVET NNVC



### Remote subjective quality in JPEG AI

#### Large-Scale Crowdsourcing Subjective Quality Evaluation of Learning-Based Image Coding

Evgeniy Upenik<sup>\*</sup>, Michela Testolina<sup>\*</sup>, João Ascenso<sup>†</sup>, Fernando Pereira<sup>†</sup> and Touradj Ebrahimi<sup>\*</sup> <sup>\*</sup>Multimedia Signal Processing Group - Ecole Polytechnique Fédérale de Lausanne <sup>†</sup>Instituto de Telecomunicações - Instituto Superior Técnico Email: \*firstname.lastname@epfl.ch, <sup>†</sup>firstname.lastname@lx.it.pt [PDF] from epfl.ch

#### Engine: QualityCrowd https://github.com/mmspg/qualitycrowd2.1

| Platform: Amazon Mechanical | Turk |
|-----------------------------|------|
|-----------------------------|------|

| Subject popul | lation | statis | tics   |
|---------------|--------|--------|--------|
| Number of cu  | hiocto | . 116  | กวมังก |

Number of subjects: 116 naïve subjects Females: 32, Males: 84 Age from 18 to 70 Age Mean: 34.72, Age Median: 32.50

| ScreenSize | Subject | Country        | Subject |
|------------|---------|----------------|---------|
| 1920x1080  | 95      | United States  | 88      |
| 1920x1200  | 15      | India          | 17      |
| 2560x1440  | 3       | Brazil         | 8       |
| 3440x1440  | 3       | United Kingdom | 3       |
| 2048x1280  | 2       | Honduras       | 2       |
| 2560x1080  | 2       | Italy          | 2       |
| 2560x1600  | 2       | Canada         | 1       |
| 1920x1440  | 1       | Estonia        | 1       |
| 2736x1824  | 1       | France         | 1       |
| 2880x1800  | 1       | Greece         | 1       |
| 3840x2160  | 1       | Not found      | 1       |







#### Layout of the DSCQS grading interface



Ξ



### Testing set

Test dataset (hidden): The test dataset cannot be used neither for training or for validation and will only be used to evaluate the final performance of learning-based image coding solutions. Test images are **kept** hidden until some appropriate stage, to avoid being used for training or validation. In this case, the test dataset will only be released after the submission of encoder and/or decoders along with the necessary models (parameters).



JPEG AI CfE test set: 16 images, 1472x976 ... 3680x2456



### **Complexity Evaluation**

>Number of parameters (weights) for the size of the largest model. Total number of parameters for all models, including models for all mandatory rate points.

>Model precision, that can assume floating-point, fixed-point or integer with N bits. The N value used must be included.

Running time with CPU only (mandatory) and with GPU enabled (recommended), for both encoder and decoder.

>MAC operations, number of Multiply Accumulate operations per sample (kilo), for encoder (submitted bitstreams) and decoder (worst case) operations.

> Minimum GPU Memory Size (per Model) for encoding and decoding.



#### Only E2E AI solutions are considered





#### Only E2E AI solutions are considered











# Training / Validation / Testing



### JPEG AI training set and usage

Information: https://jpeg.org/jpegai/dataset.html

<u>License:</u> *freely available with CCO licensing to all JPEG AI proponents* 

Quality: Almost compression artifacts free

<u>Format</u> – PNG images (RGB color components, non-interlaced);

<u>Variety</u> – Spatial resolution – from 256×256 to 8K (8 bit);

CVPR2020 training set 585 images

Data base size – Training/validation/test dataset: **5264/350**/X images.

<u>Agreement:</u> All proponents must use same training set, disclose training scripts, <u>training will be</u> to be cross-checked

How to cross-check? The cross-check is successful if BD-rate difference on test set is within agreed tolerance (~0.5% BD-rate)

### JVET NNVC training set

Information: https://vcgit.hhi.fraunhofer.de/jvet-ahg-nnvc/nnvc-ctc/-/blob/master/training-data.csv

Data base size in total **1112** video items

<u>Sources:</u> *jvet@ftp* (previously provided to JVET for standardization purposes)

BVI-DVC (191 video scenes in 4 resolutions: 480×272...3840×2176 )

Tencent Video dataset (86 video scenes all 3840×2160 )

UGC (159 video scenes from Animation to Vlog, 360p...1080p),

**DIV2K** (800 training / 100 validation / 100 test images)

<u>Format</u> – *YUV or mp4 or mkv or PNG* (DIV2K);

<u>Agreement:</u> It is required that a proposal use the sequences defined at <u>nnvc-ctc</u> for training. Results using sequences not in the list of defined sequences may also be provided as *supplemental information*.

### How about the cross-check?

#### JPEG AI:

- Device interoperability requirement states that performance difference between submission operating in *different platforms* should not be greater than 0.5% BD-rate. While it is accepted to *not meet this requirement for the CfP submission,* it is *mandatory* to be met for inclusion in the *WD/CD and reference software*.

- The decoding of submitted bitstreams will be made by each proponent in a cross-check fashion, this means that proponent A will decoded the bitstreams of proponent B and measure the bitstream size and objective quality.



should be reproducible within tolerance (0.5%)

#### JVET AhG11 (NNVC):

Cross-checking process:

(i) initial cross-check is performed on the inference stage,

(ii) **if** the technology **is considered for adoption**, then the proponent would provide the necessary scripts/information that was used for training

(iii) the **training step would be cross-checked** at that point to confirm that the training can be reproduced. It is anticipated that the training step may not be a bit-exact match and instead may require using some threshold/tolerance for acceptance.



### Training reproducibility. Possible? Needed?



Testing set should :

- have high enough variety
- be "secret" (not known during training"

#### **Device interoperability problem description**



Inference results of **NN are slightly different** on different platforms (e.g. CPU, GPU) This is critical if NN is used in entropy part of image coding system <u>Source of problem:</u> Non-associativity of addition on FP arithmetic, unpredictable summation order



Inference instability in Entropy part (parsing) cause to completely broken decoding

Entropy part must be bit-exact!

What does it mean for real applications and standardization?

Encoded on CPU, decoded on CPU



Encoded on CPU, decoded on GPU



<u>JPEG AI Use Cases and Requirements</u>: "from the same bitstream, if decoders in different platforms (CPU and GPU) provide different decoded images, it should not be greater than around <u>0.5% of BD-rate</u>." <u>CfP:</u> mandatory to be met for inclusion in the WD/CD and reference software

### Integer model. Quantization



Variational image compression with a scale hyperprior hs ga Nx5x5/21 Mx5x5/2 conv Nx5x5/2 -Ń input image Mx3x3/ conv Nx3x3, 5x5/ conv Nx5x5/ <5×5/ 5x5/ Nx5x5/ GDN GDN GDN С  $\supset$ conv Nx ž ReLU conv Nx σ ReLU ReLU Q conv conv conv conv conv AE conv Nx5x5/2† conv Nx5x5/2 reconstruction conv 3x5x5/21 conv Nx5x5/2 conv Nx5x5/2 conv Mx3x3/ conv Nx5x5/ AD IGDN IGDN IGDN ReLU ReLU ReLU Activations quantization (A)

| Test                                                  | AVG   | msssim Torch | vif   | fsim  | nlpd  | iw-ssim | vmaf  | psnrHVS |
|-------------------------------------------------------|-------|--------------|-------|-------|-------|---------|-------|---------|
| bmshj2018(Scale-Hyperprior)                           | 0.00% | 0.00%        | 0.00% | 0.00% | 0.00% | 0.00%   | 0.00% | 0.00%   |
| w <mark>16</mark> -a <mark>16-</mark> enc-GPU-dec-CPU | 0.01% | 0.01%        | 0.01% | 0.01% | 0.01% | 0.01%   | 0.01% | 0.01%   |
| w <mark>16</mark> -a <mark>16-</mark> enc-CPU-dec-GPU | 0.01% | 0.01%        | 0.01% | 0.01% | 0.01% | 0.01%   | 0.01% | 0.01%   |
| a16-w8-enc-CPU-dec-GPU                                | 0.29% | 0.27%        | 0.33% | 0.25% | 0.30% | 0.26%   | 0.29% | 0.33%   |
| a16-w8-enc-GPU-dec-CPU                                | 0.29% | 0.27%        | 0.34% | 0.25% | 0.30% | 0.26%   | 0.29% | 0.33%   |
| a8-w8-enc-GPU-dec-CPU                                 | 0.68% | 0.60%        | 0.81% | 0.59% | 0.70% | 0.59%   | 0.68% | 0.78%   |
| a8-w8-enc-CPU-dec-GPU                                 | 0.68% | 0.60%        | 0.81% | 0.59% | 0.70% | 0.59%   | 0.68% | 0.78%   |

Ballé, Johannes et al. (2018). "Variational image compression with a scale hyperprior". In: Proc. of 6th Int. Conf. on Learning Representations.

Weights quantization (W)

### Anchors, Testing, Reporting



#### JPEG Al anchors

Standard image reconstruction task

JPEG (ISO/IEC 10918-1 | ITU-T Rec. T.81)

JPEG 2000 (ISO/IEC 15444-1 | ITU-T Rec. T.800)

JPEG XL (ISO/IEC 18181-1)

HEVC Intra (ISO/IEC 23008-2 | ITU-T Rec. H.265)

VVC Intra (ISO/IEC 23090-3 | ITU-T Rec. H.266)



### Testing procedure / anchor generation



 $RGB \rightarrow YUV \rightarrow RGB$  conversion is lossless with those settings

### Target rates in JPEG AI

Target bitrates for the objective evaluations include 0.03, 0.06, 0.12, 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00 bpp.

The maximum bitrate deviation above the target bitrate should not exceed 10%.

The 0.06, 0.12, 0.25, 0.50, 0.75 bpp bitrates are mandatory and will be used for BD rate computation



bpp



#### JPEG AI GIT https://gitlab.com/wg1/jpeg-ai/jpeg-ai-qaf JPEG AI Quality Assessment Framework ☆ Star 0 Project ID: 28013907 🕃 How to compute metrics? -0- 48 Commits 🖇 13 Branches 🖉 1 Tag 🚯 1.4 MB Files 🗔 1.4 MB Storage 1 Release Find file ± ~ Clone ~ History main jpeg-ai-qaf Ð Update README.md 60d691c1 [ Alexander Karabutov authored 1 month ago README 한 No license. All rights reserved All objective quality metrics requested by JPEG AI Name Last commit Last update a examples 2 months ago Fix typo IW\_SSIM\_PyTorch.py Update IW\_SSIM\_PyTorch.py Results reporting template with anchor and several M+ README.md Update README.md month ago known E2E AI coded performance data 🟓 main.py Updated list of metrics. To have correct outp... 3 months ago 🟓 metrics.py Fixed missed range 2 months ago reporting\_template.xlsm Updated reporting template onths ago Changed lib of PSNR HVS requirements.txt 5 months ago version.txt Updated version 5 months ago

#### Thank Alexander Karabutov for this slide



#### JPEG AI GIT

#### https://gitlab.com/wg1/jpeg-ai/jpeg-ai-anchors/

| Updated metrics<br>Alexander Karabutov authored 1 mont | h ago                                  | 77bb1372 [ <sup>0</sup> ] | How to generate anchors?               |  |  |  |  |
|--------------------------------------------------------|----------------------------------------|---------------------------|----------------------------------------|--|--|--|--|
| me                                                     | Last commit                            | Last update               | Folder for each sub-task               |  |  |  |  |
| Classification                                         | Added initial structure of repo        | 1 month ago               |                                        |  |  |  |  |
| Denoising                                              | Added initial structure of repo        | 1 month ago               |                                        |  |  |  |  |
| ] ForegroundExtraction                                 | Added initial structure of repo        | 1 month ago               | Instructions for downloading SW you ne |  |  |  |  |
| SuperResolution                                        | Added initial structure of repo        | 1 month ago               | scripts for anchor(s) generation       |  |  |  |  |
| metrics @ 60d691c1                                     | Updated metrics                        | 1 month ago               |                                        |  |  |  |  |
| .gitmodules                                            | Added metrics as submodule             | 1 month ago               |                                        |  |  |  |  |
| + README.md                                            | Added initial information to README.md | 1 month ago               |                                        |  |  |  |  |



#### Performance in image restoration task

| Reference:           |                 |             |               |            |                 |                 |        |              |         |          | Choose | Reference  | e      |        |          |          |                                                     |
|----------------------|-----------------|-------------|---------------|------------|-----------------|-----------------|--------|--------------|---------|----------|--------|------------|--------|--------|----------|----------|-----------------------------------------------------|
| HEVC                 |                 |             |               |            |                 |                 |        |              |         |          | HEVC   |            |        |        |          |          |                                                     |
|                      |                 |             | 5 p           | oints BD-r | ate (0.06, 0.12 | 2, 0.25, 0.5, 0 | .75)   |              |         |          |        |            |        |        |          |          |                                                     |
|                      |                 | BD rate vs  | HEVC          |            |                 |                 |        |              |         |          | Dec    | c. comple: | xity   |        | Enc. con | nplexity | SURMISSION Dataila                                  |
| Test                 | AVG             | nsssim Torc | vif           | fsim       | nlpd            | iw-ssim         | vmaf   | psnrHVS      | лахыцлі | kMAC/pxl | GPU    | CPU        | Model  | ModelS | GPU      | CPU      | SUBMISSION Details                                  |
| J2K-KDU-VIS          | 40.7%           | 43.3%       | 87.8%         | 10.9%      | 34.7%           | 32.1%           | 13.2%  | <b>62.7%</b> | 1%      |          | 0.5    | 0.5        |        |        | 0        | 0        |                                                     |
| HEVC                 | 0.0%            | 0.0%        | 0.0%          | 0.0%       | 0.0%            | 0.0%            | 0.0%   | 0.0%         | 10%     |          | 1.0    | 1.0        |        |        | 1.0      | 1.0      |                                                     |
| VVC                  | -11. <b>8</b> % | -9.4%       | -15.1%        | -17.1%     | -9.8%           | -10.9%          | -12.0% | -8.0%        | 11%     |          | 1.5    | 1.5        |        |        | 3.8      | 3.8      |                                                     |
| TEAM05(JPEG AI CfE)  | 3.1%            | -15.7%      | <b>28</b> .1% | -19.1%     | 4.4%            | <b>-8.7%</b>    | 10.4%  | 22.0%        | 11%     |          |        |            |        |        |          |          |                                                     |
| TEAM06(JPEG AI CfE)  | -0.3%           | -34.2%      | 30.9%         | -35.5%     | 2.4%            | -20.2%          | 12.8%  | 41.4%        | 260%    |          |        |            |        |        |          |          |                                                     |
| TEAM08 (JPEG AI CfE) | -1.9%           | 0.8%        | <b>-7.9%</b>  | -5.0%      | 0.5%            | 0.5%            | -4.2%  | 2.3%         | 312%    |          |        |            |        |        |          |          |                                                     |
| cheng2020(CVPR 2020) | -5.4%           | -3.8%       | -5.6%         | -19.6%     | -0.5%           | -5.8%           | -4.0%  | 1.7%         | 537%    | 975      |        | 1037       | 5.E+07 | 2.E+08 |          |          | Self-attention model variant from "Learned Image Co |
| mbt2018(Google)      | -0.8%           | 0.1%        | -0.2%         | -17.1%     | 3.2%            | -4.1%           | 4.9%   | 7.7%         | 394%    | 444      | 107    | 126        | 7.E+07 | 3.E+08 |          |          | Joint Autoregressive Hierarchical Priors model from |
| bmshj2018(Google)    | 26.0%           | 26.8%       | 27.0%         | 6.4%       | 31.9%           | 21.2%           | 32.3%  | 36.3%        | 392%    | 199      | 0.3    | 9          | 2.E+07 | 9.E+07 |          |          | Scale Hyperprior model from J. Balle, D. Minnen, S. |
|                      |                 |             |               |            |                 |                 |        |              |         |          |        |            |        |        |          |          | -                                                   |

bmshj2018





cheng2020



Scale Hyperprior model from J. Balle, D. Minnen, S. Singh, S.J. Hwang, N. Johnston:

Joint Autoregressive Hierarchical Priors model from D. Minnen, J. Balle, G.D. Toderici Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules Zhenoxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto



### Performance in image restoration task

| Reference:           |            |             |        |            |                |                 |       |         |        |          | Choose | Reference | e 🖌    |        |          |          |                                                     |
|----------------------|------------|-------------|--------|------------|----------------|-----------------|-------|---------|--------|----------|--------|-----------|--------|--------|----------|----------|-----------------------------------------------------|
| VVC                  |            |             |        |            |                |                 |       |         |        |          | VVC    |           |        |        |          |          |                                                     |
|                      |            |             | 5 p    | oints BD-r | ate (0.06, 0.1 | 2, 0.25, 0.5, 0 | .75)  |         |        |          |        |           |        |        |          |          |                                                     |
|                      |            | BD rate vs  | VVC    |            |                |                 |       |         |        |          | De     | c. comple | xity   |        | Enc. con | nplexity | SURMISSION Dataila                                  |
| Test                 | <u>AVG</u> | nsssim Torc | vif    | fsim       | nlpd           | iw-ssim         | vmaf  | psnrHVS | Лахыцы | kMAC/pxl | GPU    | CPU       | Model  | ModelS | GPU      | CPU      | SUBMISSION Details                                  |
| J2K-KDU-VIS          | 61.5%      | 59.1%       | 133.5% | 31.6%      | 50.3%          | 48.7%           | 27.3% | 80.0%   | 1%     |          | 0.3    | 0.3       |        |        | 0        | 0        |                                                     |
| HEVC                 | 14.1%      | 10.9%       | 18.8%  | 21.2%      | 11.4%          | 12.7%           | 14.2% | 9.3%    | 10%    |          | 0.7    | 0.7       |        |        | 0.3      | 0.3      |                                                     |
| VVC                  | 0.0%       | 0.0%        | 0.0%   | 0.0%       | 0.0%           | 0.0%            | 0.0%  | 0.0%    | 11%    |          | 1.0    | 1.0       |        |        | 1.0      | 1.0      |                                                     |
| TEAM05(JPEG AI CfE)  | 17.9%      | -7.1%       | 58.3%  | -3.6%      | 16.2%          | 2.6%            | 24.7% | 33.9%   | 11%    |          |        |           |        |        |          |          |                                                     |
| TEAM06(JPEG AI CfE)  | 14.8%      | -28.6%      | 65.7%  | -22.5%     | 14.0%          | -11.2%          | 28.2% | 57.9%   | 260%   |          |        |           |        |        |          |          |                                                     |
| TEAM08 (JPEG AI CfE) | 10.9%      | 10.4%       | 8.6%   | 12.4%      | 10.8%          | 11.6%           | 7.6%  | 15.2%   | 312%   |          |        |           |        |        |          |          |                                                     |
| cheng2020(CVPR 2020) | 8.6%       | 7.1%        | 15.0%  | -2.2%      | 11.9%          | 6.3%            | 9.3%  | 12.7%   | 537%   | 975      |        | 690       | 5.E+07 | 2.E+08 |          |          | Self-attention model variant from "Learned Image Co |
| mbt2018(Google)      | 14.2%      | 11.7%       | 22.4%  | 1.0%       | 16.1%          | 8.6%            | 19.9% | 19.6%   | 394%   | 444      | 71     | 84        | 7.E+07 | 3.E+08 |          |          | Joint Autoregressive Hierarchical Priors model from |
| bmshj2018(Google)    | 44.9%      | 41.1%       | 55.8%  | 30.0%      | 48.0%          | 37.2%           | 50.8% | 51.1%   | 392%   | 199      | 0.2    | 6         | 2.E+07 | 9.E+07 |          |          | Scale Hyperprior model from J. Balle, D. Minnen, S. |

64 kMAC/pxl, NVIDIA RTX 3080, 4K@60fps (← JVET NNVC)

<u>bmshj2018</u>



Image Encoder Hype Input AE Context AE Model Bits Factorized Reconstruction Entropy ecoder Model Entropy Parameters AD Ν(μ, θ) Õ

AE

¢ AD mbt2018

<u>cheng2020</u>



Scale Hyperprior model from J. Balle, D. Minnen, S. Singh, S.J. Hwang, N. Johnston:

Joint Autoregressive Hierarchical Priors model from D. Minnen, J. Balle, G.D. Toderici Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules Zhenoxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto

#### Plots in JPEG AI reporting template







<u>JPEG</u> ~0.25 bpp





<u>J2К</u> 0.25 bpp





<u>JXL</u> 0.25 bpp





<u>HEVC</u> ~0.25 bpp





<u>VVC</u> ~0.25 bpp





<u>TEAM 06</u> ~0.25bpp

JPEG-AI CfE





<u>Cheng2020</u> ~0.25bpp

JPEG-AI CfE

### JVET NN VC anchor, target rates, configurations

Anchor: VVC VTM11.0 (+ MCTF)

Configurations: All-Intra, Random Access, Low-delay B (P)

<u>QP</u>: 22, 27, 32, 37, [42] (in all-Intra configuration it corresponds to  $\sim 0.04 \dots 0.72$  bpp)

For solutions w/o QP-concept:  $\pm 10\%$  to the target rate

Objective metrics: ("JVET" 10 bits) PSNR Y, U, V + MS-SSIM – Y (optionally for U and V)



= MS-SSIM in IPFG AI

### Post VC development in JVET: ECM & NNVC

JVET - AhG 12 / EE2 Enhanced compression beyond VVC capability

JVET - AhG 11 / EE1 Neural network-based video coding

<u>Anchor:</u> VVC VTM11.0 (+ MCTF); <u>Configuration</u>: Random Access

|          | ECM3.1 over VTM-11.0_nnvc-1.0 |        |        |              |              | ECM3.1 & EE1-1.2 over VTM-11.0_nnvc-1.0 |        |        |              |              |  |
|----------|-------------------------------|--------|--------|--------------|--------------|-----------------------------------------|--------|--------|--------------|--------------|--|
|          | Y-PSNR                        | U-PSNR | V-PSNR | EncT         | DecT CPU     | Y-PSNR                                  | U-PSNR | V-PSNR | EncT         | DecT CPU     |  |
| Class A1 | -16.4%                        | -16.4% | -22.3% | ×4.6         | ×4.8         | -22.4%                                  | -27.7% | -34.8% | ×5.5         | ×476         |  |
| Class A2 | -16.6%                        | -21.2% | -20.7% | ×4.5         | ×5.2         | -23.1%                                  | -33.7% | -36.1% | ×5.2         | ×462         |  |
| Class B  | -13.7%                        | -20.9% | -20.0% | ×4.2         | ×4.9         | -19.6%                                  | -35.0% | -35.0% | ×4.8         | ×422         |  |
| Class C  | -15.0%                        | -17.2% | -16.4% | ×4.0         | ×4.7         | -21.2%                                  | -31.6% | -32.1% | ×4.3         | ×331         |  |
| Class E  |                               |        |        |              |              |                                         |        |        |              |              |  |
| Overall  | -15.2%                        | -19.1% | -19.6% | × <b>4.3</b> | × <b>4.9</b> | -21.3%                                  | -32.4% | -34.4% | × <b>4.9</b> | × <b>413</b> |  |
| Class D  | -15.4%                        | -16.9% | -15.8% | ×3.9         | ×4.9         | -22.7%                                  | -33.0% | -33.4% | ×4.1         | ×296         |  |
| Class F  | -13.6%                        | -19.4% | -19.2% | ×3.4         | ×3.9         | -16.8%                                  | -27.2% | -27.2% | ×4.7         | ×181         |  |

| Test1: ECM = VVC + | "classical tools" | (20+) |
|--------------------|-------------------|-------|
|--------------------|-------------------|-------|

#### Test2: ECM + NN-based filter



### Post VC development in JVET: ECM & NNVC

#### JVET - AhG 12 / EE2 Enhanced compression beyond VVC capability

JVET - AhG 11 / EE1 Neural network-based video coding

Anchor: VVC VTM11.0 (+ MCTF); Configuration: All Intra

|          | ECM3.1 over VTM-11.0_nnvc-1.0 |        |        |              |              |        | ECM3.1 & EE1-1.2 over VTM-11.0_nnvc-1.0 |        |      |          |  |  |
|----------|-------------------------------|--------|--------|--------------|--------------|--------|-----------------------------------------|--------|------|----------|--|--|
|          | Y-PSNR                        | U-PSNR | V-PSNR | EncT         | DecT CPU     | Y-PSNR | U-PSNR                                  | V-PSNR | EncT | DecT CPU |  |  |
| Class A1 | -7.1%                         | -13.8% | -17.3% | ×3.9         | ×2.7         | -11.3% | -24.4%                                  | -30.0% | 4.5  | 349      |  |  |
| Class A2 | -6.5%                         | -14.3% | -12.4% | ×3.8         | ×2.6         | -10.6% | -26.4%                                  | -24.9% | 3.9  | 281      |  |  |
| Class B  | -6.2%                         | -15.1% | -15.3% | ×3.7         | ×2.7         | -10.2% | -27.9%                                  | -28.2% | 3.7  | 239      |  |  |
| Class C  | -7.2%                         | -11.3% | -11.6% | ×3.5         | ×2.6         | -11.4% | -23.4%                                  | -26.1% | 3.4  | 156      |  |  |
| Class E  | -7.6%                         | -12.0% | -13.6% | ×3.5         | ×2.9         | -13.9% | -25.9%                                  | -27.4% | 3.6  | 264      |  |  |
| Overall  | -6.9%                         | -13.4% | -14.0% | × <b>3.7</b> | × <b>2.7</b> | -11.3% | -25.7%                                  | -27.4% | 3.7  | 242      |  |  |
| Class D  | -6.1%                         | -8.6%  | -8.3%  | ×3.4         | ×2.5         | -10.6% | -21.4%                                  | -23.8% | 3.3  | 139      |  |  |
| Class F  | -11.1%                        | -17.0% | -17.2% | ×2.4         | ×3.1         | -13.8% | -24.2%                                  | -24.3% | 2.4  | 166      |  |  |

| Test1: ECM = VVC | + "classical tools | 5″ (10+) |
|------------------|--------------------|----------|
|------------------|--------------------|----------|

#### Test2: ECM + NN-based filter



### JVET NNVC GIT

#### https://vcgit.hhi.fraunhofer.de/jvet-ahg-nnvc/nnvc-ctc

| Fraunhofer 🛛 🗮 Menu                                                         | 0                                                                                                                         | ✓ Search GitLab                            |                                           | ~ 🔇 ~                                  |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------|
| N nnvc-ctc                                                                  | jvet-ahg-nnvc > nnvc-ctc                                                                                                  |                                            |                                           |                                        |
| <ul> <li>Project information</li> <li>Repository</li> <li>Issues</li> </ul> | N nnvc-ctc v<br>Project ID: 425                                                                                           |                                            | û • Star 1                                | ¥ Fork 0                               |
| Merge requests 0                                                            | 24 Commits 🥲 1 Branch 🧷 1 Tag 🗈 3.2 I                                                                                     | MB Files 🛛 3.2 MB Storage                  |                                           |                                        |
| <ul> <li>Security &amp; Compliance</li> <li>Deployments</li> </ul>          | master v nnvc-ctc / + v                                                                                                   | History                                    | Find file Web IDE                         | Clone 🗸                                |
| <ul> <li>Monitor</li> <li>Infrastructure</li> </ul>                         | Patch to support MSSSIM2 (full size metric calculation for RPR)       a@bddd7b         Andrew Segall authored 1 month ago |                                            |                                           |                                        |
| Packages & Registries In Analytics                                          | README Add LICENSE                                                                                                        | NGELOG                                     | Results reporting ten<br>anchor performan | nplate with<br>nce data                |
| 🛄 Wiki                                                                      | Configure Integrations                                                                                                    |                                            |                                           |                                        |
| X Snippets                                                                  | Name                                                                                                                      | Last commit                                |                                           | NNV specific VTM SW                    |
| Settings                                                                    | Anchor performance                                                                                                        | Cleanup - Clarify anchor data for JVET-U20 |                                           | mouncations                            |
|                                                                             | Software Patches                                                                                                          | Patch to support MSSSIM2 (full size metric |                                           | Evamples for kMAC/pyl                  |
|                                                                             | Scripts                                                                                                                   | Update license header                      |                                           | computation                            |
|                                                                             | M# README.md                                                                                                              | +Addition of the TVD content               | 3 m                                       | ponths ago                             |
|                                                                             | 😢 training-data.csv                                                                                                       | Include sequences from the YouTube UGC     |                                           | ist of video sequences in training set |

#### Complexity assessment in JVET NNVC

| Table 1.    | Network Information for                                                                                | NN-based Video Coding Tool Testing in Training Stage                                  |     |
|-------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|
|             | Networ                                                                                                 | k Information in Training Stage                                                       |     |
|             | GPU Type                                                                                               | GPU: GTX 1080ti x 4 x 12GB)                                                           |     |
|             | Framework:                                                                                             | (e.g. TF v14.0, PyTorch v1.4, TensorRT, OpenVino, etc.)                               |     |
|             | Number of GPUs per<br>Task                                                                             | (e.g. 1)                                                                              |     |
|             |                                                                                                        |                                                                                       | Man |
|             | Epoch:                                                                                                 | (e.g. 100)                                                                            |     |
|             | Batch size:                                                                                            | (e.g. 4Kx16)                                                                          |     |
| Mandatory   | Loss function:                                                                                         | (e.g. L1, L2, etc.)                                                                   | ]   |
| iviandatory | Training time:                                                                                         | (e.g. 48h)                                                                            |     |
|             | Training data information:                                                                             | (e.g. video sequences, training and validation set, uncompressed or compressed, etc.) |     |
|             | Training configurations<br>for generating<br>compressed training data<br>(if different to VTM<br>CTC): | (e.g. QP values, chroma QP offsets, etc.)                                             |     |
|             | Number of iterations                                                                                   | (e.g. 100)                                                                            |     |
|             | Patch size                                                                                             | (e.g. 64x64)                                                                          |     |
| Optional    | Learning rate:                                                                                         | $(e, g, 5e-\Lambda)$                                                                  |     |
|             | Ontimizer:                                                                                             | (e.g. ADAM)                                                                           |     |
|             | Preprocessing:                                                                                         | (e.g. preprocessing procedure, normalization, cropping method, rotation, zoom etc.)   |     |
|             | Mini-batch selection process:                                                                          |                                                                                       |     |
|             | Other information:                                                                                     |                                                                                       |     |
|             |                                                                                                        |                                                                                       |     |

| Table           | 2. Network Information for                                                            | r NN-based Video Coding Tool Testing in Inference Stage               |  |
|-----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
|                 | Networ                                                                                | rk Information in Inference Stage                                     |  |
| HW environment: |                                                                                       |                                                                       |  |
| undatory        | GPU Type                                                                              | GPU: GTX 1080ti x 4 x 12GB)                                           |  |
|                 | Framework:                                                                            | (e.g. TF v14.0, PyTorch v1.4, TensorRT, OpenVino, etc.)               |  |
|                 | Number of GPUs per Task                                                               | (e.g. 1)                                                              |  |
|                 |                                                                                       |                                                                       |  |
|                 | Total Parameter Number                                                                | (e.g. 100)                                                            |  |
|                 | Parameter Precision (Bits)                                                            | (e.g. 16)                                                             |  |
|                 | Memory Parameter (MB)                                                                 | #VALUE!                                                               |  |
|                 | Multiplay Accumulate<br>(MAC)                                                         | Number of multiply accumulate operations per sample (giga) (e.g. 100) |  |
|                 |                                                                                       |                                                                       |  |
|                 | Total Conv. Layers                                                                    | (e.g. 100)                                                            |  |
|                 | Total FC Layers                                                                       | (e.g. 100)                                                            |  |
|                 | Total Memory (MB)                                                                     |                                                                       |  |
|                 | Batch size:                                                                           | (e.g. 4Kx16)                                                          |  |
|                 | Patch size                                                                            | (e.g. 64x64)                                                          |  |
| Optional        | Changes to network<br>configuration or weights<br>required to generate rate<br>points | (e.g. )                                                               |  |
|                 | Peak Memory Usage (Total)                                                             |                                                                       |  |
|                 | Peak Memory Usage (per<br>Model)                                                      |                                                                       |  |
|                 | Border handling                                                                       | Description of border handling method, if applicable                  |  |
|                 | Other information:                                                                    |                                                                       |  |
|                 |                                                                                       |                                                                       |  |

#### Complexity assessment in JVET NNVC

| Table 1. Network Information for NN-based Video Coding Tool Testing in Training Stage |                          |                                                                  | Do I have GPU to reproduce this     |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|-------------------------------------|--|--|--|
| Network Information in Training Stage                                                 |                          |                                                                  | training?                           |  |  |  |
|                                                                                       | GPU Type                 | GPU: GTX 1080ti x 4 x 12GB)                                      | training:                           |  |  |  |
|                                                                                       | Framework:               | (e.g. TF v14.0, PyTorch v1.4, TensorRT, OpenVino, etc.)          |                                     |  |  |  |
|                                                                                       | Number of GPUs per       | (a, a, 1)                                                        | For some tasks multiple GPUs        |  |  |  |
|                                                                                       | Task                     | (c.g. 1)                                                         |                                     |  |  |  |
|                                                                                       |                          |                                                                  | training is very different from     |  |  |  |
|                                                                                       | Epoch:                   | (e.g. 100)                                                       | single GPU training                 |  |  |  |
|                                                                                       | Batch size:              | (e.g. 4Kx16)                                                     |                                     |  |  |  |
| Mandatory                                                                             | Loss function:           | (e.g. L1, L2, etc.)                                              |                                     |  |  |  |
| in an autory                                                                          | Training time:           | (e.g. 48h)                                                       | Results of MS-SSIM and MSE training |  |  |  |
|                                                                                       | Training data            | (e.g. video sequences, training and validation set, uncompressed | can be very different visually      |  |  |  |
|                                                                                       | information:             | or compressed, etc.)                                             | can be very unterent visually       |  |  |  |
|                                                                                       | Training configurations  |                                                                  |                                     |  |  |  |
|                                                                                       | for generating           |                                                                  | Cives understanding how long        |  |  |  |
|                                                                                       | compressed training data | (e.g. QP values, chroma QP offsets, etc.)                        | Gives understanding now long        |  |  |  |
|                                                                                       | (if different to VIM     |                                                                  | training takes                      |  |  |  |
|                                                                                       | CIC):                    |                                                                  |                                     |  |  |  |
|                                                                                       | Number of iterations     | (a.g. 100)                                                       |                                     |  |  |  |
|                                                                                       | Patch size               | (e.g. 64x64)                                                     |                                     |  |  |  |
|                                                                                       | I alchi size             | (e, g, 5e, 4)                                                    |                                     |  |  |  |
| -                                                                                     | Ontimizer:               | (e.g. ADAM)                                                      | If different from common training   |  |  |  |
| Optional                                                                              | Optimizer.               | (e.g. preprocessing procedure normalization cropping method      | set materials been used             |  |  |  |
|                                                                                       | Preprocessing:           | rotation, zoom etc.)                                             | Set materials been used             |  |  |  |
|                                                                                       | Mini-batch selection     |                                                                  |                                     |  |  |  |
|                                                                                       | process:                 |                                                                  |                                     |  |  |  |
|                                                                                       | Other information:       |                                                                  |                                     |  |  |  |
|                                                                                       |                          |                                                                  |                                     |  |  |  |

#### Complexity assessment in JVET NNVC

|                                  | Table                                  | 2. Network Information fo                                                             | r NN-based Video Coding Tool Testing in Inference Stage               |  |
|----------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Do I have DC noworful anough to  | Network Information in Inference Stage |                                                                                       |                                                                       |  |
| Do I have PC powerful enough to  | HW environment:                        |                                                                                       |                                                                       |  |
| run encoder/decoder?             |                                        | GPU Type                                                                              | GPU: GTX 1080ti x 4 x 12GB)                                           |  |
|                                  |                                        | Framework:                                                                            | (e.g. TF v14.0, PyTorch v1.4, TensorRT, OpenVino, etc.)               |  |
| Integer or Elect operations?     |                                        | Number of GPUs per Task                                                               | (e.g. 1)                                                              |  |
| integer of float operations:     | Mandatory                              |                                                                                       |                                                                       |  |
|                                  | Mandatory                              | Total Parameter Number                                                                | (e.g. 100)                                                            |  |
|                                  |                                        | Parameter Precision (Bits)                                                            | (e.g. 16)                                                             |  |
| Total amount of memory for all   |                                        | Memory Parameter (MB)                                                                 | #VALUE!                                                               |  |
| models and all parameters        |                                        | Multiplay Accumulate<br>(MAC)                                                         | Number of multiply accumulate operations per sample (giga) (e.g. 100) |  |
|                                  |                                        | Total Conv. Layers                                                                    | (e.g. 100)                                                            |  |
| Amount of multiplication for one | Optional                               | Total FC Layers                                                                       | (e.g. 100)                                                            |  |
| pixel reconstruction             |                                        | Total Memory (MB)                                                                     |                                                                       |  |
|                                  |                                        | Batch size:                                                                           | (e.g. 4Kx16)                                                          |  |
|                                  |                                        | Patch size                                                                            | (e.g. 64x64)                                                          |  |
| Depth of NN ~ latency            |                                        | Changes to network<br>configuration or weights<br>required to generate rate<br>points | (e.g. )                                                               |  |
|                                  |                                        | Peak Memory Usage (Total)                                                             |                                                                       |  |
| How often decoder should relead  |                                        | Peak Memory Usage (per<br>Model)                                                      |                                                                       |  |
| How often decoder should re-load |                                        | Border handling                                                                       | Description of border handling method, if applicable                  |  |
| model pameters                   |                                        | Other information:                                                                    |                                                                       |  |
|                                  |                                        |                                                                                       |                                                                       |  |

#### Performance complexity analysis (JVET-NNVC)



#### Performance complexity analysis (JVET-NNVC)



### Some closing words....

|                           | JPEG AI                                                                                                                                                                     | JVET NNVC        |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| Architectures             | E2E AI                                                                                                                                                                      | Hybrid & Al      |  |
| Decoding speed (at least) | 30 fps                                                                                                                                                                      | 60 fps           |  |
| Encoding Speed            | ~decoder speed                                                                                                                                                              | >> decoder speed |  |
| Tasks                     | Reconstruction & enchantment & CV                                                                                                                                           | Reconstruction   |  |
| Training                  | not required to be exactly reproducible, but close enough<br>Cross-check for training never happen ve                                                                       |                  |  |
| Testing                   | Hidden test set                                                                                                                                                             | Open test set    |  |
| Metrics                   | MS-SSIM, IW-SSIM, VMAF, VIF,<br>PSNR-HVS-M, NLDP, FSIM                                                                                                                      | PSNR, MS-SSIM    |  |
| Complexity                | <ul> <li>kMAC/pxl, total memory for all parameters;</li> <li>decoding run time of CPU and GPU;</li> <li>duration of training Do we get enough information? Not y</li> </ul> |                  |  |