



# **Video Coding for Machines**

Yuan Zhang China Telecom January 2022













Video has occupied a very large portion of internet traffic.

- More and more video are consumed by machines.
- Automation, analysis and intelligence without or with human intervention -> machine vision or hybrid vision
- Machine-to-Machine (M2M) devices and connections are fast growing.
- Machine vision is different from human vision.
- Different purpose and evaluation metrics
- Video coding for machines becomes an important topic.







#### ISO/IEC JTC1/SC29 WG2 committee created the VCM Ad-Hoc Group in July 2019

| Name         | AHG on Video Coding for Machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                           |  |  |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Mandates     | <ol> <li>To collect use cases and related requirements for description and<br/>machine analysis</li> <li>To collect use cases and related requirements for combined hur<br/>representation and compression</li> <li>To promote video coding for machine and invite video compre</li> <li>To collect data sets, ground truth and metrics</li> <li>To compare performance of analysis using original data vs. ana<br/>different bit rates in the typical cases of object detection</li> <li>To collect evidence on the level of achievability of combined h<br/>representation and compression</li> </ol> | id compression of video<br>nan/machine-oriented<br>ssion and machine visio<br>lysis using compressed<br>uman/machine-oriente | o for<br>video<br>on experts<br>d features at<br>ed video |  |  |  |  |  |  |  |  |  |
| Chairmen     | Yuan Zhang (China Telecom), <u>zhangyuan1.sh@chinatelecom.cn</u><br>Patrick Dong (Gyrfalcon Tech), <u>patrick.dong@gyrfalcontech.con</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>n</u>                                                                                                                     |                                                           |  |  |  |  |  |  |  |  |  |
| Duration     | Until MPEG 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                           |  |  |  |  |  |  |  |  |  |
| Reflector(s) | mpeg-vcm@lists.aau.at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |                                                           |  |  |  |  |  |  |  |  |  |
| Subscribe    | https://lists.aau.at/mailman/listinfo/mpeg-vcm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                           |  |  |  |  |  |  |  |  |  |
| Meeting      | 14:00-18:00 Sunday before MPEG 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Room Size                                                                                                                    | 30                                                        |  |  |  |  |  |  |  |  |  |







#### Scope:

• Define a bitstream from compressed video or extracted feature, which can be used for a variety of machine tasks, and ensuring high compression efficiency and machine intelligent task performance at the same time.

**VCM** 

能

赋



- Video Surveillance
- Smart Traffic
- Smart City
- Smart Industry
- Smart Content
- Consumer Electronics

#### **Machine Tasks:**

- Object Detection
- Instance Segmentation

• ....

来

- Image Reconstruction
   Event Prediction
- Super Resolution

- Object Tracking
- Event identification

• ...

Density Prediction

## VCM empowers the machine vision industry

能未来

赋



Video based and feature based compression experiments are carried out for each sub-tasks. Additional application scenarios need to be refined and researched, including: Smart glasses, unmanned store, unmanned warehouse, robots, smart fishery/agriculture, AR/VR gaming, etc.

| Density<br>Estimation | Estimation of<br>population density<br>within a certain<br>bounding box                    | x |   | 0 |
|-----------------------|--------------------------------------------------------------------------------------------|---|---|---|
| Event Search          | Provide a time stamp<br>for when an event has<br>occurred given an<br>input image or video | x |   | x |
| Measurement           | Measure the object<br>parameters (size,<br>orientation, curvature,<br>angle)               |   | x |   |
| Object masking        | Detect and conceal<br>the certain object in<br>video with a mask                           | x |   | x |

|                               | Description                                                                                                                                                | Surveillance | Intelligent    | Intelligent | Intelligent |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------------|-------------|
|                               |                                                                                                                                                            | / Smart City | Transportation | Industry    | Content     |
| Object<br>Detection           | Determine a<br>bounding box for an<br>object that may be in<br>the input image /<br>video along with<br>object id                                          | x            | x              | x           | x           |
| Object<br>Segmentation        | Determine which<br>pixels belong to<br>which objects by<br>defining binary masks<br>for each image                                                         | x            | x              | x           | x           |
| Image/Video<br>Reconstruction | Given the compressed<br>feature stream with an<br>additional bit-stream<br>retum the<br>reconstructed<br>image/video                                       | x            |                | x           | x           |
| Image/Video<br>Enhancement    | With an additional<br>bit-stream return the<br>reconstructed<br>image/video<br>enhanced for human<br>consumption such as<br>super resolution, low<br>light | x            |                |             | x           |
| Object<br>Tracking            | Determine the<br>location of an object<br>throughout video<br>along with object id                                                                         | x            | x              | x           |             |
| Event<br>Recognition          | Determine which<br>event has occurred in<br>the video                                                                                                      | x            | x              | x           | x           |
| Event<br>Prediction           | Predict which event<br>will occur                                                                                                                          | x            | x              |             | x           |
| Anomaly<br>Detection          | Determine whether or<br>not a nonstandard<br>deviation has<br>occurred such as<br>malfunctions                                                             | x            | x              | x           | x           |





#### **Coding video for machines**

- ✓ Low bit-rate
- $\checkmark$  High precision

#### **Coding video for human and machines**

- ✓ Low bit-rate
- $\checkmark$  High precision
- ✓ High fidelity

#### **Coding feature for machines**

- ✓ Balancing computation load
- ✓ Privacy protection

### **VCM architectures**







Video coding

- Coding efficiency shall be significantly improved compared to that of state-of-the-art
- standards.
- Support various intelligent task accuracy, human vision quality and bitrate.
- Either machine only or hybrid machine and human consumption shall be supported.

#### Feature extraction

- Computational offloading shall be supported.
- Privacy protection shall be supported.

Feature coding

- Coding efficiency shall be competitive compared to the state-of-art video coding solution.
- Support various intelligent task accuracy and bitrate.
- The coding technology shall support machine consumption and support multiple tasks.



Anchors are generated using current SOTA technologies, and received technical proposals are compared to anchors according to two aspects: Coding performance and machine task performance.



厛

能



Five machine vision tasks are selected to cover the main tasks identified in the use cases.

Five Datasets with suitable license terms are adopted for evaluation.

| Machine Task          | Network Architecture                                          | Evaluation Dataset                             | Evaluation Metric         |  |
|-----------------------|---------------------------------------------------------------|------------------------------------------------|---------------------------|--|
| Object Detection      | Faster R-CNN with ResNeXt-101<br>backbone                     | OpenImageV6<br>TVD<br>FLIR<br>SFU-HW-object-v1 | mAP@0.5<br>mAP@[0.5:0.95] |  |
| Instance Segmentation | Instance Segmentation Mask R-CNN with ResNeXt-101<br>backbone |                                                | mAP@0.5                   |  |
| Object Tracking       | JDE-1088x608                                                  | TVD<br>HiEve-10*                               | ΜΟΤΑ                      |  |
| Action Recognition    | SlowFast                                                      | HiEve-10*                                      | frame mAP (fmAP)          |  |
| Pose Estimation       | HRNet                                                         | HiEve-10*                                      | mAP@0.5                   |  |



Bits per pixel (BPP) is used to measure bitstream cost for image dataset. Bitrate in kbps is used to measure bitstream cost for video dataset. BD-rate and BD-mAP/BD-MOTA/BD-fmAP are used to compare a proposed solution to the anchor solution for a single task. Excel template is used to compute metrics.

能

|       |                |          |       | Reference: VCM Anchor (VTM-12.0) |        |        |        |           |           | Test: tested |        |        |        |        |           |         |
|-------|----------------|----------|-------|----------------------------------|--------|--------|--------|-----------|-----------|--------------|--------|--------|--------|--------|-----------|---------|
| Scale | Dataset        | QPISlice | BPP   | mAP                              | Y psnr | U psnr | V psnr | Enc T [h] | Dec T [h] | BPP          | mAP    | Y psnr | U psnr | V psnr | Enc T [h] | Dec T [ |
| 10    | 0% OpenImageV6 | 22       | 0.863 | 78.929                           |        |        |        |           |           | 0.481        | 78.890 |        |        |        | 29.957    | 32.3    |
|       |                | 27       | 0.509 | 77.989                           |        |        |        |           |           | 0.361        | 78.453 |        |        |        | 29.951    | 32.4    |
|       |                | 32       | 0.287 | 77.263                           |        |        |        |           |           | 0.246        | 77.787 |        |        |        | 29.144    | 31.8    |
|       |                | 37       | 0.153 | 73.963                           |        |        |        |           |           | 0.172        | 76.418 |        |        |        | 29.118    | 31.5    |
|       |                | 42       | 0.078 | 68.842                           |        |        |        |           |           | 0.115        | 74.242 |        |        |        | 29.119    | 31.6    |
|       |                | 47       | 0.037 | 58.021                           |        |        |        |           |           | 0.079        | 71.488 |        |        |        | 29.108    | 31.5    |
|       | FLIR           | 22       | 1.892 | 39.317                           | 43.079 |        |        |           |           |              |        |        |        |        |           |         |
|       |                | 27       | 1.325 | 39.323                           | 38.038 |        |        |           |           |              |        |        |        |        |           |         |
|       |                | 32       | 0.376 | 39.685                           | 31.483 |        |        |           |           |              |        |        |        |        |           |         |
|       |                | 37       | 0.146 | 34.578                           | 29.758 |        |        |           |           |              |        |        |        |        |           |         |
|       |                | 42       | 0.072 | 24.888                           | 28.319 |        |        |           |           |              |        |        |        |        |           |         |
|       |                | 47       | 0.034 | 12.746                           | 26.605 |        |        |           |           |              |        |        |        |        |           |         |
|       | TVD            | 22       | 0.475 | 55.748                           |        |        |        |           |           | 0.378        | 55.011 | -      |        |        | 2.605     | 2.8     |
|       |                | 27       | 0.270 | 53.752                           |        |        |        |           |           | 0.278        | 54.307 |        |        |        | 2.605     | 2.8     |
|       |                | 32       | 0.147 | 50.632                           |        |        |        |           |           | 0.188        | 52.785 |        |        |        | 2.588     | 2.8     |
|       |                | 37       | 0.075 | 45.311                           |        |        |        |           |           | 0.137        | 50.152 |        |        |        | 2.585     | 2.8     |
|       |                | 42       | 0.037 | 38.586                           |        |        |        |           |           | 0.091        | 47.480 |        |        |        | 2.589     | 2.8     |
|       |                | 47       | 0.017 | 20.155                           |        |        |        |           |           | 0.063        | 44.449 | 0      |        |        | 2.539     | 2.9     |





For each intelligent task (like object detection, object segmentation, object tracking, etc.), the anchors are generated following a fixed pipeline: Preprocessed using ffmpeg4.2.2, Coded using VTM 12.0 with 4 different resolutions (100%, 75%, 50%, 25%) and 6 different QPs (22, 27, 32, 37, 42, 47).





#### The Received Technologies can be classified into two categories: Category 1 (Track 1): Feature Coding

The input to the codec is usually feature map from a neural network.



(a) Coding features directly

(b) Coding features as images using existing codec

#### Category 2 (Track 2): Image/Video Coding:

The Codec module typically follows a video-in-video-out manner.



- (a) End-to-End Coding
- (b) Descriptor based Coding
- (c) Enhancing Image Coding for Machines with Compressed Feature Residuals

赋能未来



Category 1(a): Packed features are coded directly

Features are directly coded with new coding kernels, typically follows a Quantization + Entropy Coding manner which achieves close performance as coding images using VTM codec





Category 1(b): Packed features are coded using video codec

Features are packed as images or videos and coded using VVC. The order of channels are enhanced so that the prediction module in VVC can perform at it best. Resulted bitstreams are much larger than those from VCM anchor solution





(m58081)

# **Received Technologies: Image/Video Coding**



Category 2(a): End-to-end Learning Based Codec Image compression network: Cheng2020, bmshj2018\_hyperprior, or modified mbt2018mean network

Jointly trained with VCM object detection network in which its parameters are fixed.

 Inverted Bottleneck Structure + Joint Optimization of MSE, bitrate, and task accuracy(m56416), a maximum BD rate gain of 28.09% is achieved.





 MS-SSIM optimized Cheng2020 network(m58050), a BD-rate gain of 23.56% is achieved.





Category 2(b): Descriptor based Codec

Images are seperated into foreground and background using a pre-detection, and the foreground is coded using a lower QP while background is coded with a higher QP.

Region Based Coding with Machine Attention(m56572), a BD-rate gain of 30.76% is achieved



能未来

赋



Category 2(c). Enhancing Image Coding for Machines with Compressed Feature Residuals

- CityScapes dataset is used. Fast R-CNN as the object detection task network
- Compared to VVC/H.266, achieve BD-rate gain 40.5%



(m58072)



In October 2021 MPEG meeting, it was decided to split MPEG VCM work into two tracks:

赋能未来

- Track 1 Feature extraction and compression
   ✓ Draft CfE: April 2022
   ✓ CfE: July 2022
- Track 2 Images and video compression
   ✓ Draft CfP: January 2022
   ✓ CfP: April 2022

## **Exploration Experiments(EEs)**







# EE1 was launced with the target of better understanding contributed technologies related with feature compression for VCM.



赋能未来

### **EE2: Learning based Codec**



EE2 was launced with the target of studying the performance of learning-based compression for machine vision tasks including end-to-end training-based compression method.



赋能未来

| Dataset                     | EE2 subtest (Task)    | Compressor 2 | Compressor 3 | Compressor 4 |
|-----------------------------|-----------------------|--------------|--------------|--------------|
| OpenImages Object detection |                       | -17.92%      | -68.61%      | -30.12%      |
|                             | Instance segmentation | -17.46%      | -14.99%      | -31.44%      |

| TVD    | Object detection      | 7.66%                | -35.64%               | -6.81%               |
|--------|-----------------------|----------------------|-----------------------|----------------------|
|        | Instance segmentation | 11.16% <sup>3</sup>  | 20.75%                | -98.54% <sup>3</sup> |
|        | Object tracking       | 1881.82%4            | 2393.07% <sup>4</sup> | 204.01% <sup>4</sup> |
| SFU-HW | Object detection      | 2938.99 <sup>4</sup> | 2016.85%4             | Not available        |



# EE3 was launced with the target of studying the performance of technologies that support multi-tasks with hybrid machine/human vision.



|             | DIACE         |       |                  | Test Ta | is <b>k</b> 1     |        | Test, Task 2        |        |                   |        |  |
|-------------|---------------|-------|------------------|---------|-------------------|--------|---------------------|--------|-------------------|--------|--|
| IVAGE       |               |       | Object Detection |         |                   |        | Object Segmentation |        |                   |        |  |
| Scale       | Dataset       | QP    | pbb              | mΛP     | Norma ised<br>mAP | weight | BPP                 | mΔP    | Normalised<br>mAP | weight |  |
|             |               | 22    | 0.209            | 54.585  | 97.329            | 8      |                     | 0.209  | 44.291            | 98.065 |  |
|             |               | 27    | 0.118            | 52.023  | 92.762            |        | 0.118               | 43.094 | 95.413            |        |  |
| 1005/ 17/10 | 32            | 0.064 | 7 667            | 84 994  |                   | 0.064  | 37.916              | 83.950 | 07                |        |  |
| 100%        |               | 37    | 0.035            | 41.579  | 74.140            | 0.0    | 0.035               | 33.470 | 74.106            | 0.4    |  |
|             | Scale Dataset | 47    | 0.019            | 30 302  | 54 030            |        | 30                  | d.019  | 23.520            | 52.297 |  |
|             |               | 47    | 0.010            | 17.853  | 31.834            |        | 0.010               | 15.368 | 34.026            |        |  |

赋

能未来





- VCM Video coding for machines
- VCM focus on the video/image/feature coding technology
- Supporting V2X, video surveillance, unmanned aerial vehicle, smart manufacturing applications related to machine vision including Q5, Q12, Q21, FG-VM, FG-Al4AD of ITU-T SG16.

赋能未来

## **DCM: Data coding for machine-intelligence**

#### • Work scope

- Applications oriented machine intelligence and human-machine intelligence
- Representation and data coding for video, audio and other data information
- Propose national standard suggestion
- Encourage Chinese experts to participate in international standardization and improve international influences





指导单位:工业和信息化部科技司 工业和信息化部电子信息司 编制单位:面向机器智能的数据编码标准工作组





# Thank You!





# Q & A

