

AI for Public Health

Prof. Dr. Lothar H. Wieler Geneva, 29.05.2019

The Robert Koch Institute (RKI) 1891-2017

Robert Koch (1843 – 1910) Director until 1904

New site in Berlin

Federal Health Office

Integration into the new RKI is named the national Public **Health Institute**

1891

1900

1948

1952

1994

2010

2016

Royal Prussian Institute for Infectious Disease

Reorganization as Robert Koch-Institute

Independent Federal Public Health Institute for Infectious + Non-**Communicable Diseases**

125th anniversary

Key Functions

Detect - Evaluate - Act

1200 employees (~450 researchers)

Identification/evaluation

- High prevalence diseases
- Diseases of specific PHrelated political significance

Communication/Cooperation

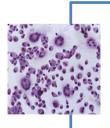
- Partners in scientific sector
- Public Health service
- Health care sector

Epidemiological intelligence

- Communicable diseases
- Outbreak management
- Non-communicable diseases

Consultation/Recommendation

- Political decision makers
- Physicians
- Local health authorities



Research

- Collaboration with national & international partners
- Currently >100 externally funded research projects

Publications

- National & international
- >500 peer-reviewed publications / year
- National health reporting

Centre for International Health Protection (ZIG) and Informationcenter for International Health Protection (INIG)

- ZIG launched in January 2019
 - Sustainable development of core global health competencies at RKI
- INIG
 - Internationale Collaborations: Support of international partners, coordinination of international missions
 - Public Health Intelligence (PHI): Epidemiological information about communicable and non-communicable diseases
 - Planned for PHI: Methodical development (social media, artificial intelligence, deep learning)

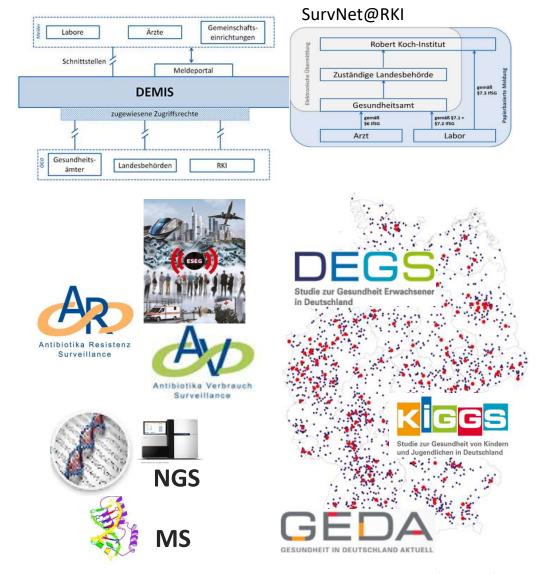
International Association of National Public Health Institutes

- Coordinating body to empower National Public Health Institutes
- 110 members from 93 countries (and growing)
- Swift, comprehensive Public Health cooperation across borders
- Measurable improvements in outbreak surveillance and response for Ebola, Zika, and other urgent threats
- Knowledge and data sharing (SNAP-GHS)

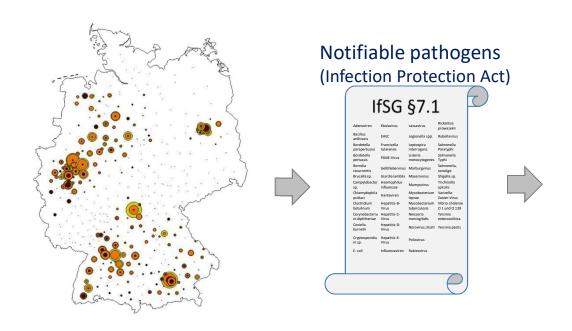
How can we use Al in Public Health?

Health Surveillance at RKI

Al based on large established health data collections offers immense potential for future health surveillance

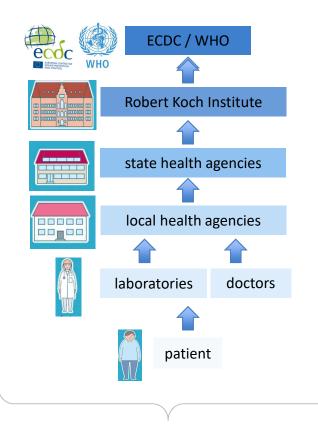


Al for Disease Outbreak Detection



- Early outbreak detection for fast *intervention*
- Forcast of outbreak severity for reaction

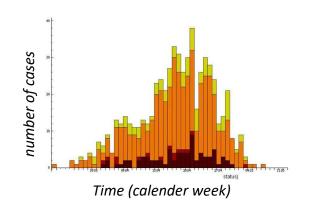
German Reporting System



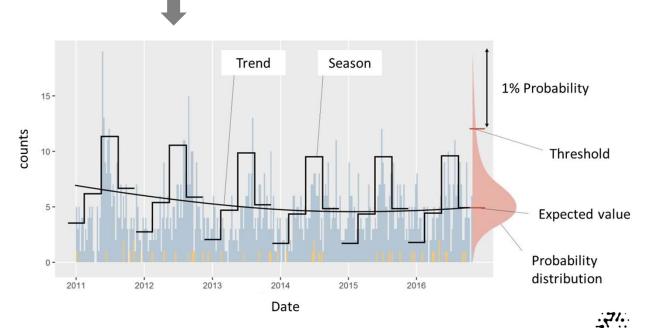
Surveillance of > 80 pathogens and > 400 counties recording ~ 500.000 cases/year detection ~ 20.000 outbreaks/year

Infectious Disease Outbreak Detection

 Aggregate case data by time into timeseries



- Outbreak detection model
 - Warning system of emerging diseases
 - Forecasting severity of seasonal diseases

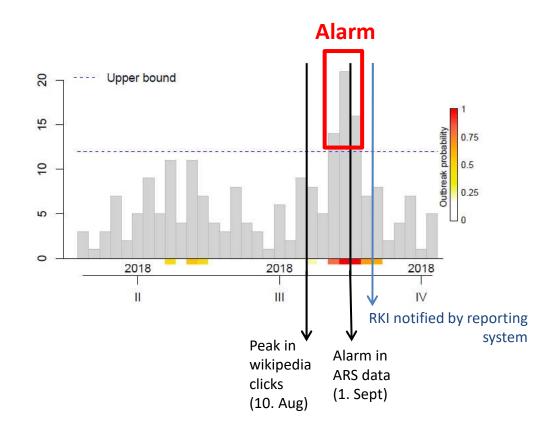


Dashboard of Influenza Severity (Oct'17 - May'19)

Integration of Real-time Data Sources using Al

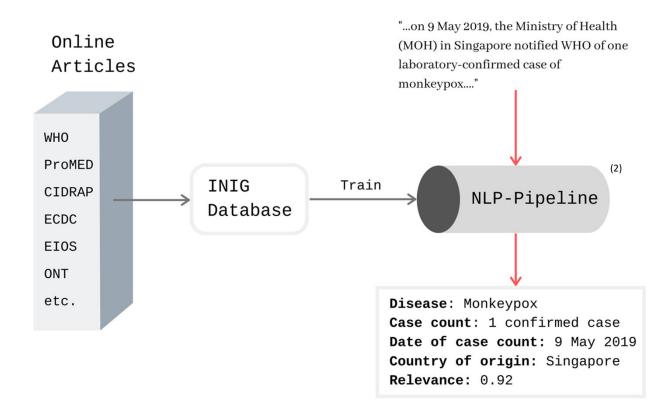
- Antibiotic Resistance Surveillance (ARS)
- Near-real-time routine data from emergency departments and hospitals (ESEG)
- Online sources (google trends, wikipedia clicks)
- ADA-app (symptom checker)
- → Improve early detection of emerging diseases

Outbreak case (2018): Burkholderia cepacia



AI for International Health Reports

 "More than 60% of the initial outbreak reports come from unofficial informal sources[...]."¹



¹ https://www.who.int/csr/alertresponse/epidemicintelligence/en/

² Auss Abbood, Thesis "Automatic Information Extraction and Relevance Evaluation of Epidemiological Texts Using Natural Language Processing"

ROBERT	KOCH	INSTITUT
		X

Enter an URL :		SUMMARIZE
----------------	--	-----------

Get WHO DON	Get Pron	ned Articles	Сору	Excel	PDF	Print	
					Sea	arch:	
Disease	Country	Confirmed Cases	Date Of Case Count	Relevance	Input Date	Source	
Ebola hemorrhagic fever	Democratic Republic of the Congo	312	05, March, 2019	0.44	2019- Mar-14	https://www.who.int/csr/don/7-march-2019-ebola-drc/en/	
Lassa fever	Federal Republic of Nigeria	5	14, February, 2019	0.72	2019- Mar-7	https://www.who.int/csr/don/14- february-2019-lassa-fever- nigeria/en/	
poliomyelitis	Independent State of Papua New Guinea	1369	01, January, 2005	0.9	2019- Mar-7	https://www.who.int/csr/don/27- february-2019-polio- indonesia/en/	
Disease	Country	Confirmed Cases	Date Of Case Count	Relevance	Input Date	Source	
Showing 1 to 3	of 3 entries					Previous 1 Next	

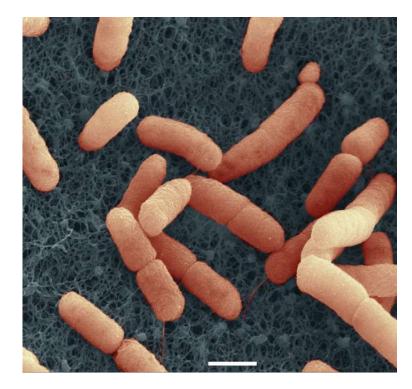
SIGNALE

Auss Abbood, Thesis "Automatic Information Extraction and Relevance Evaluation of Epidemiological Texts Using Natural Language Processing"

Al for pathogenicity assessment

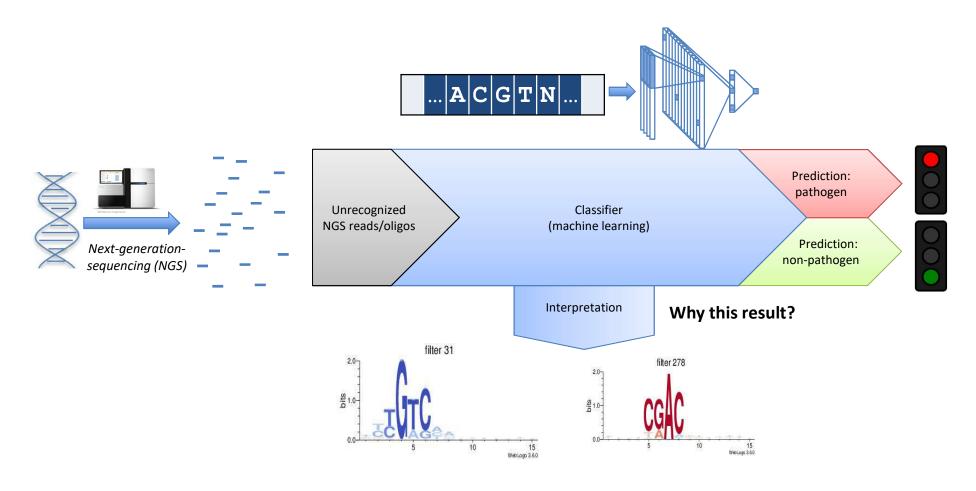
- Biosecurity threats
- Natural or engineered
- State-of-the-art in pathogen detection:DNA sequencing

known threats



EHEC bacteria, O104:H4 outbreak strain. Scanning electron microscopy. Bar: 1 µm. Source: Gudrun Holland, Michael Laue/RKI

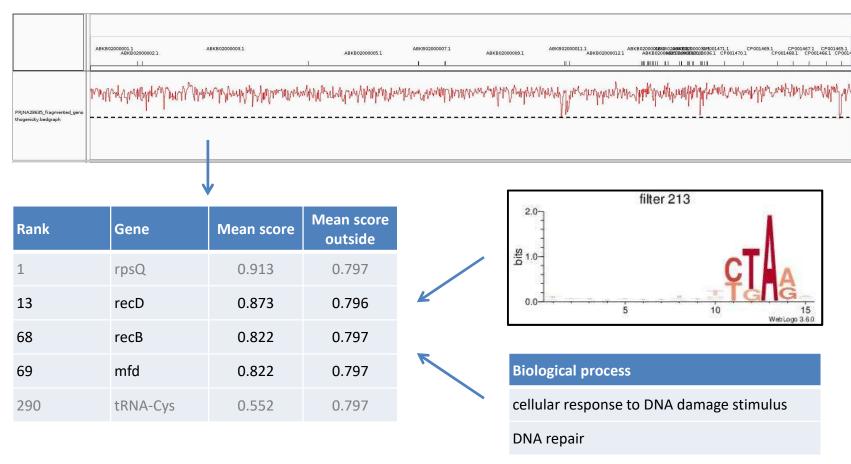
Deep learning for pathogen potential prediction



Bartoszewicz et al., 2019, http://dx.doi.org/10.1101/535286

Interpretable pathogenicity analysis

Borrelia spielmanii A14S (Lyme disease) genome



Bartoszewicz et al., 2019, http://dx.doi.org/10.1101/535286

Al for Pathogen-Antibiotic-Relation

hosp_9592

hosp_703

hosp_704

hosp_37

hosp_6908

hosp_7216

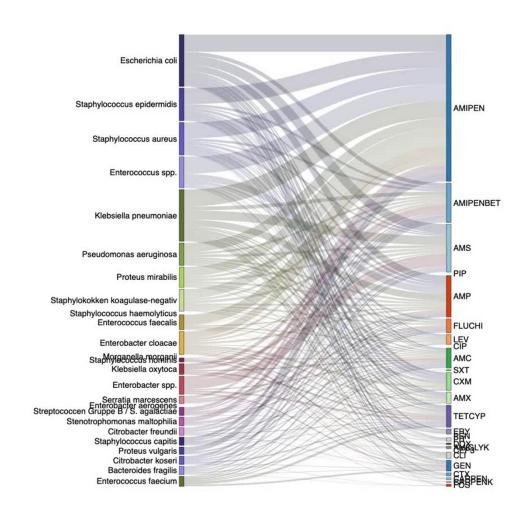
hosp_10

hosp_21

hosp_707

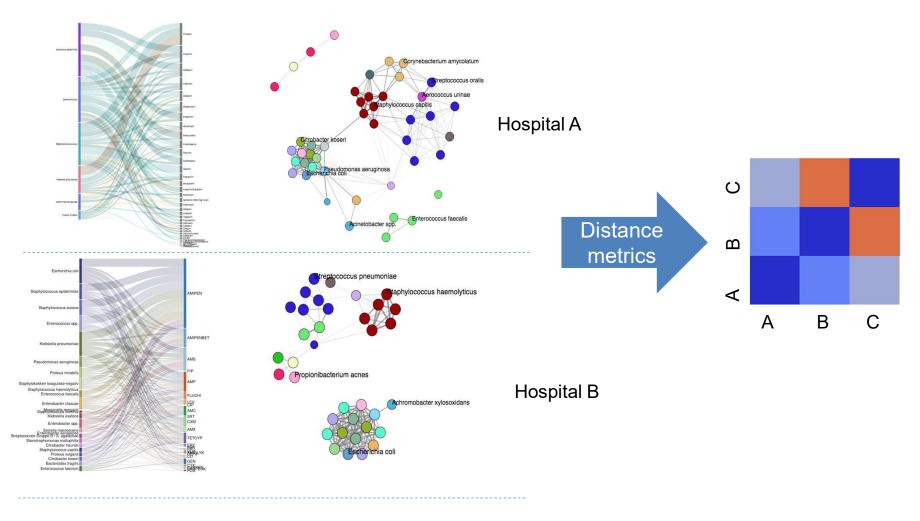
hosp_20

Selected
Antibiotics: 25
Selected
Pathogens: 25
Total Number of
Antibiotics: 77
Total Number of
Pathogens: 249
Displayed # of
Resistances: 2420
Total # of
Resistances: 3017



by D. Brockman

Structural Differences in Hospital-Specific Networks



' ■ ■ Hospital ...

Al for non-communicable disease surveillance: comparing clusters

1. Fast food/convenience foods

Breaded fish
Soft drinks
Coffee Sports/energy drinks
Breaded poultry
Fast food Fried potatoes
Breaded meat
Black/green tea Frozen meals

3. Healthy foods

Wholegrain bread Tap water
Honey/jam Butter
Fruit/herbal tea

Cooked vegetables
FishSalad/raw vegetables
Milk Frozen vegetables Pasta/rice

2. Low-fat/diet foods

Diet drinks Fresh fruit
Diet products Mineral water
Cream cheese

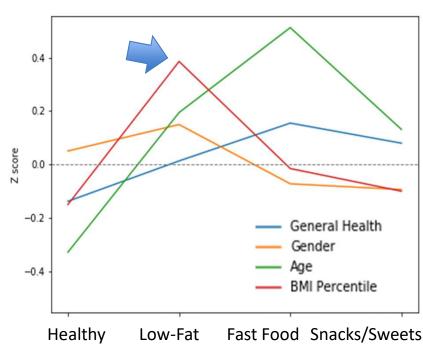
Low-fat cream cheese

Low-fat quark/yogurt
Quark/yogurt
Cheese Low-fat cheese

Cheese Low-fat cheese

4. Sweets/fatty foods

Meat CakeSoft drinks
PuddingFastsoupfood
Cookies Canned vegetables
Eggs Snack foods
Fried potatoes
Breaded poultry, Nut-nougat cream Pancakes
Chocolate Nuts Sweets
Ice cream White bread



Demographics

General Health Index

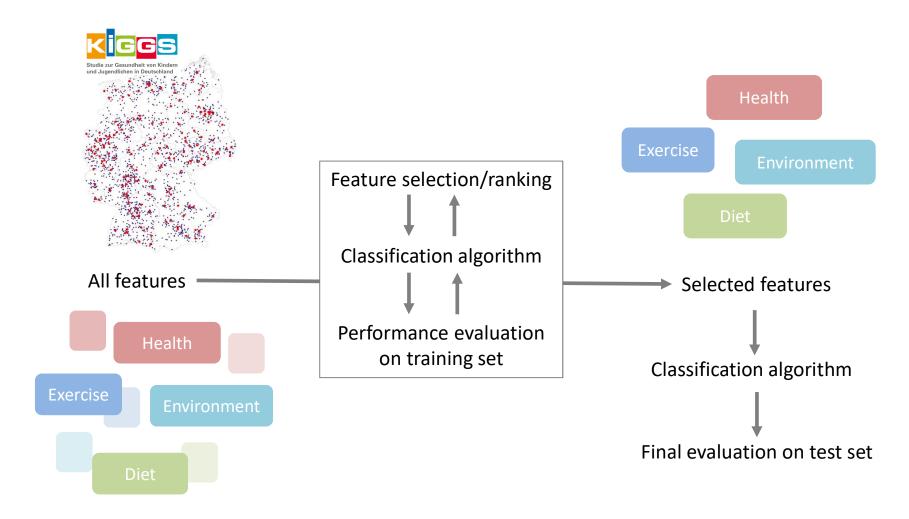
- low = good
- high = bad

Gender

- low = boys
- high = girls

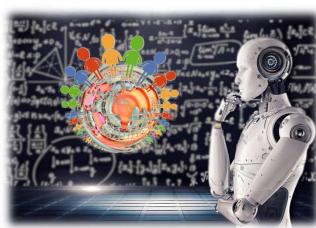
Work by A. Rose et al.

Al for non-communicable disease surveillance: feature selection



Quality Requirements

- Robustness and manipulation safety for AI-based Public Health applications
- Explainable AI
 - For deep insights on influential factors
 - Acceptance of Public Health decision making
- Generalization



Source (Modified): www.vpnsrus.com; Pixabay.com, district round arched

