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Motivation

❖ Need for an efficient health monitoring system for the 

rapidly increasing elderly population

❖ Usage of wearable technology for monitoring, entirely 

dependent on the wearer 

❖ A non-invasive, hassle-free elderly location monitoring and 

fall detection system helps in timely treatment, avoiding 

severe effects

❖ Real-time data analysis using machine learning and cloud 

computing enables better and accurate health-care 

systems
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• Improving object tracking and detecting falls using 

deep learning

• Multi-Feature based Person Tracking (MFPT)

– Visual similarity 

– Motion similarity

• Vision based Person Fall Detector ( VPFD )

– Bounding box information from MFPT

– Histogram of Oriented Gradients (HoG) 

– Long Short-Term Memory (LSTM)

Scope of the Work 
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YOLO Model: Person Detector

❖ Structural Similarity Index (SSIM) – to select key frame in improving processing speed 
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Figure 2 – YOLO Model based Object Detection
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Similarity Computation

❖Target Association: effective tracking of the same 

person in different frames

❖ Image Similarity: mapping visually similar persons

❖Motion Similarity: mapping nearby persons with 

similar previous movements
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Figure 3 - Image Similarity using Siamese CNN
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Similarity Computation (cont.)
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Similarity Computation (cont.)

Figure 4 - Motion Similarity
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Similarity Computation (cont.)

Two possible scenarios evaluated

❖ Selection of best candidate with highest image and motion 

similarity score

▪ Score greater than specific threshold 

▪ The current person is mapped to target candidate

❖ If no such candidates are found, current person is considered as 

new person in the scene
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Fall Detection Approach

VPFD Model

❖ Uses combination of: 

❖ Rate of change in angle obtained from bounding box

❖ HoG - LSTM model for fall classification

❖HoG – feature extraction, a representation of object’s edge 

orientations and structure

❖Sequence analysis using LSTM, to detect fall occurrence 
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Fall Detection Approach (cont.)

❖ Using Bounding Box 

𝑂𝐴 = x1 − x0 𝑖 + 𝑦1 − 𝑦0 𝑗

𝑂𝐵 = x2 − x0 𝑖 + 𝑦2 − 𝑦0 𝑗

cos𝛼 =
𝑂𝐴 .𝑂𝐵

𝑂𝐴 𝑂𝐵

❖ Avoids false detection using angle threshold and information from

HoG-LSTM model 
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Figure 5 – Angle between two centers of same person
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Implementation Overview
❖ Hardware 

➢ Intel i5 Processor, Windows OS, 8GB RAM computing machine

➢ Nvidia GeForce 940MX graphics card (for training in deep learning) 

❖ Software

➢ Anaconda distribution of Python programming language

➢ Python flask web framework 

➢ Keras, Tensorflow library for deep learning model construction  

➢ Scikit-learn for frame processing 

❖ Dataset

➢ UR Fall dataset: 30 Fall event and 40 normal videos of daily life activities

➢ Training - Testing split of data: 80 - 20
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Figure 7 – Validation phase of LSTM

Figure 8 – Average precision in OTB 100 data set 

Results

Figure 6 – Test on UR Fall Dataset

➢ The model convergence with respect to the input 

data after 350 epochs

➢ The percentage of average precision (OTB 100 

dataset) at threshold value of 20 is 94.67%.
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Method Correct
Detects

Miss Wrong
Detects

ID
switch

MOTA

CNN +
LSTM

78.23% 12.2% 3.3% 7.5% 76.6%

CNN 77.1% 15.4% 7.01% 7.5% 70.1%

LSTM 78.96% 14% 8.1% 7.1% 70.8%

Table 1 – Multiple Object Tracking Accuracy (MOTA)

Results (cont.)

𝑀𝑂𝑇𝐴 = 1 – (𝑀 + 𝑊𝐷 + 𝐼𝐷𝑠𝑤𝑖𝑡𝑐ℎ) Τ (𝑂𝑏𝑗𝑔𝑡)

The overall Multiple Object Tracking Accuracy was calculated using

where M → person misses, WD → wrong person detections, IDswitch → ID switches, Objgt → total 

persons in the entire video scene

➢ The combination of appearance 

and motion similarity yields 

higher accuracy
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Epoch Loss Accuracy %
1 0.2937 87.42
2 0.1401 93.45
3 0.1051 96.52
4 0.0874 97.68
5 0.1211 95.20
6 0.0553 98.01

S. No. Method Accuracy %

1 Curvelets + HMM 96.88

2 Optical Flow + CNN 95.00

3 HoG + LSTM 

(Proposed)

98.01

Table 2 – Validation phase of VPFD Table 3 – Comparison of methods based on accuracy

Results (cont.)

➢ VPFD Model Accuracy: learning ability 

to differentiate between fall and non-

fall sequences

➢ Higher accuracy by proposed method 

results due to enhanced learning
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❖ Conclusion

➢ A novel multi-feature-based person tracker, supported by an efficient 

vision-based fall detection

➢ The proposed system achieved 94.67% precision in tracking and 

98.01% accuracy in fall detection

➢ The fall detection module (HoG feature-based LSTM training 

network) is relevant to the activities of ITU-T Study Group 16 and 

Focus Group on Artificial Intelligence for Health (FG-AI4H)

❖ Future work

➢ Detection of different activities apart from fall detection, and 

recognize and report in the cases of anomalies

➢ Standardization of the proposed scheme at ITU-T SG16

Summary
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