Elderly Health Monitoring System With Fall Detection Using Multi-Feature Based Person Tracking

Dhananjay Kumar & Vivekanandan Dharmalingham

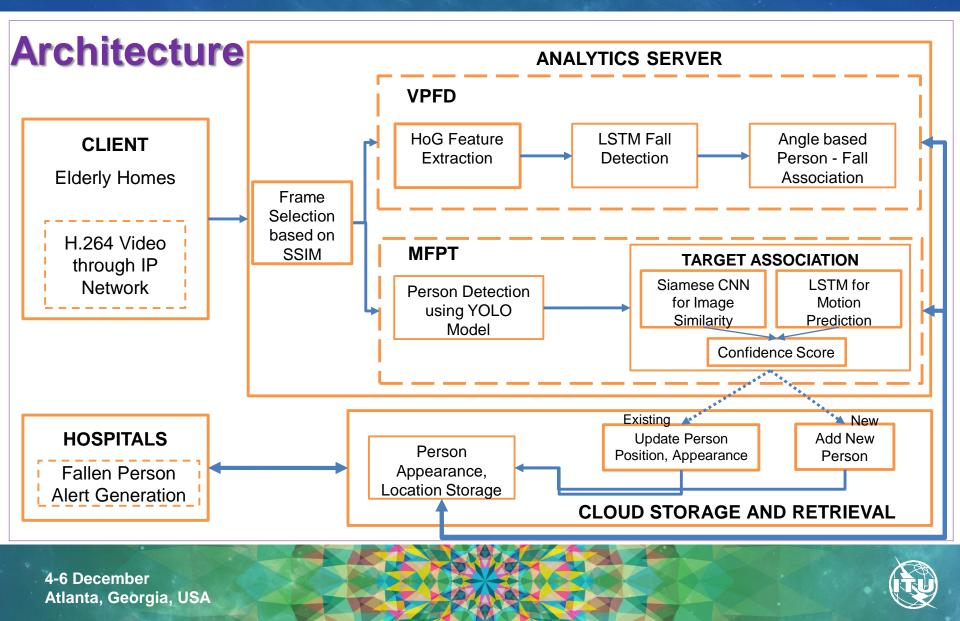
Anna University, MIT Campus, Chennai, India dhananjay@annauniv.edu

Outlines

- Motivation
- System Architecture
- YOLO Model Based Object Detection
- Similarity Computation
- Fall Detection Approach
- Implementation Results

Motivation

- Need for an efficient health monitoring system for the rapidly increasing elderly population
- Usage of wearable technology for monitoring, entirely dependent on the wearer
- A non-invasive, hassle-free elderly location monitoring and fall detection system helps in timely treatment, avoiding severe effects
- Real-time data analysis using machine learning and cloud computing enables better and accurate health-care systems


Scope of the Work

- Improving object tracking and detecting falls using deep learning
- Multi-Feature based Person Tracking (MFPT)
 - Visual similarity
 - Motion similarity

Vision based Person Fall Detector (VPFD)

- Bounding box information from MFPT
- Histogram of Oriented Gradients (HoG)
- Long Short-Term Memory (LSTM)

YOLO Model: Person Detector

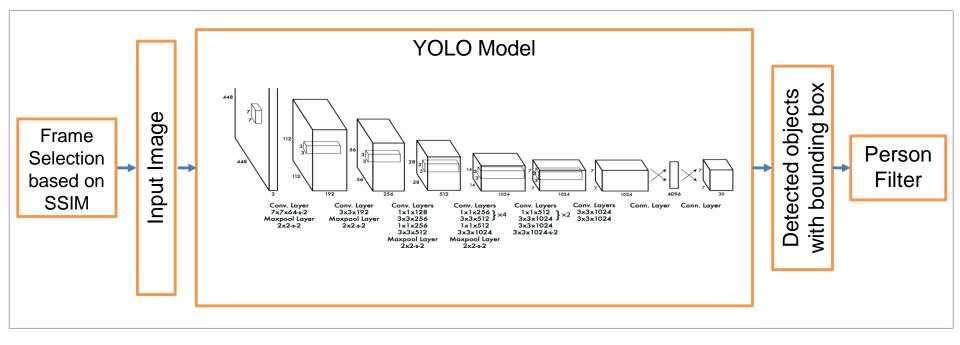


Figure 2 – YOLO Model based Object Detection

Structural Similarity Index (SSIM) – to select key frame in improving processing speed

Similarity Computation

- Target Association: effective tracking of the same person in different frames
- Image Similarity: mapping visually similar persons
- Motion Similarity: mapping nearby persons with similar previous movements

Similarity Computation (cont.)

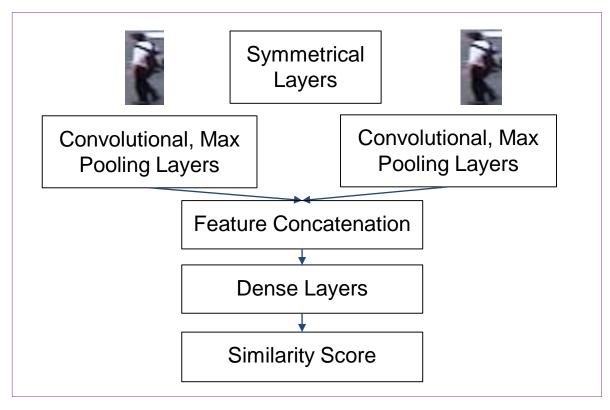
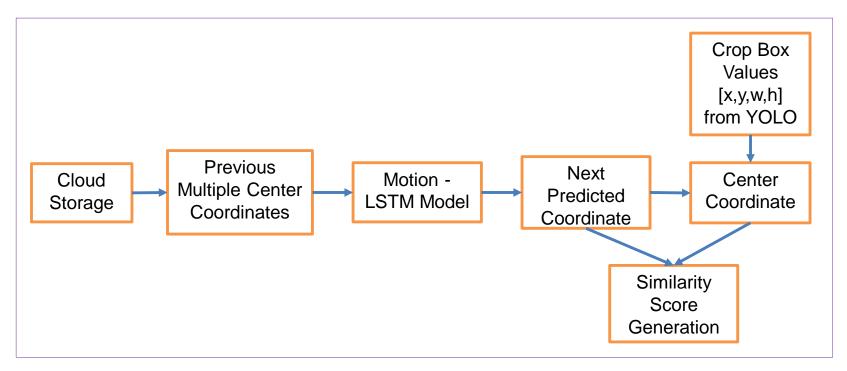



Figure 3 - Image Similarity using Siamese CNN

Similarity Computation (cont.)

Figure 4 - Motion Similarity

Similarity Computation (cont.)

Two possible scenarios evaluated

- Selection of best candidate with highest image and motion similarity score
 - Score greater than specific threshold
 - The current person is mapped to target candidate
- If no such candidates are found, current person is considered as new person in the scene

Fall Detection Approach

VPFD Model

- Uses combination of:
 - Rate of change in angle obtained from bounding box
 - HoG LSTM model for fall classification
- HoG feature extraction, a representation of object's edge orientations and structure
- Sequence analysis using LSTM, to detect fall occurrence

Fall Detection Approach (cont.)

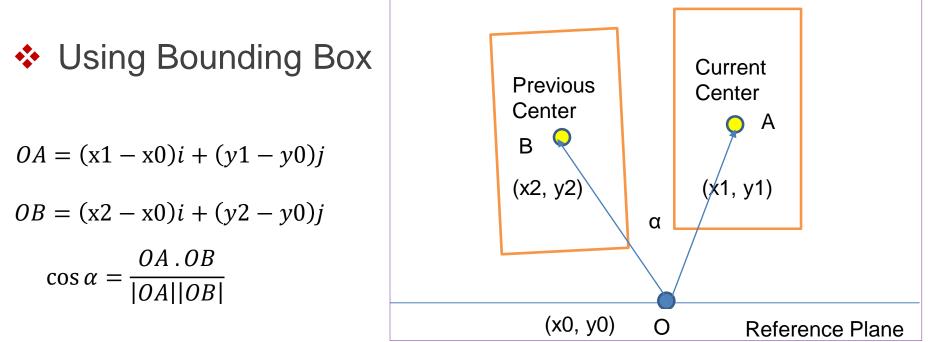


Figure 5 – Angle between two centers of same person

 Avoids false detection using angle threshold and information from HoG-LSTM model

Implementation Overview

Hardware

- Intel i5 Processor, Windows OS, 8GB RAM computing machine
- Nvidia GeForce 940MX graphics card (for training in deep learning)

Software

- Anaconda distribution of Python programming language
- Python flask web framework
- Keras, Tensorflow library for deep learning model construction
- Scikit-learn for frame processing

Dataset

- UR Fall dataset: 30 Fall event and 40 normal videos of daily life activities
- Training Testing split of data: 80 20

Results

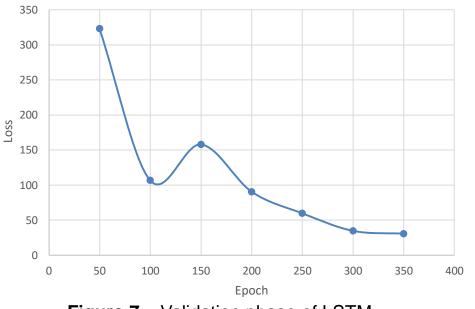


Figure 7 – Validation phase of LSTM

- The model convergence with respect to the input data after 350 epochs
- The percentage of average precision (OTB 100 dataset) at threshold value of 20 is 94.67%.

Figure 6 - Test on UR Fall Dataset

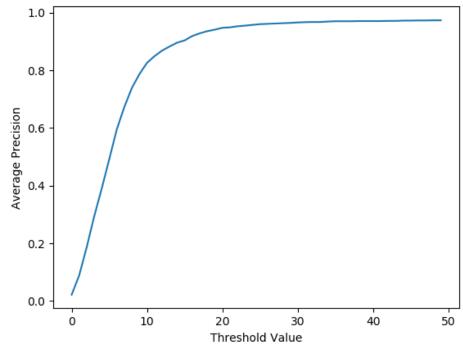


Figure 8 – Average precision in OTB 100 data set

Results (cont.)

The overall Multiple Object Tracking Accuracy was calculated using

 $MOTA = 1 - (M + WD + ID_{switch}) / (Obj_{gt})$

where $M \rightarrow$ person misses, $WD \rightarrow$ wrong person detections, $ID_{switch} \rightarrow ID$ switches, $Obj_{gt} \rightarrow$ total persons in the entire video scene

Method	Correct Detects	Miss	Wrong Detects	ID switch	ΜΟΤΑ
CNN + LSTM	78.23%	12.2%	3.3%	7.5%	76.6%
CNN	77.1%	15.4%	7.01%	7.5%	70.1%
LSTM	78.96%	14%	8.1%	7.1%	70.8%

Table 1 – Multiple Object Tracking Accuracy (MOTA)

The combination of appearance and motion similarity yields higher accuracy

Results (cont.)

 Table 2 – Validation phase of VPFD

Epoch	Loss	Accuracy %
1	0.2937	87.42
2	0.1401	93.45
3	0.1051	96.52
4	0.0874	97.68
5	0.1211	95.20
6	0.0553	98.01

VPFD Model Accuracy: learning ability to differentiate between fall and nonfall sequences

Table 3 – Comparison of methods based on accuracy

S. No.	Method	Accuracy %
1	Curvelets + HMM	96.88
2	Optical Flow + CNN	95.00
3	HoG + LSTM (Proposed)	98.01

Higher accuracy by proposed method results due to enhanced learning

Summary

Conclusion

- A novel multi-feature-based person tracker, supported by an efficient vision-based fall detection
- The proposed system achieved 94.67% precision in tracking and 98.01% accuracy in fall detection
- The fall detection module (HoG feature-based LSTM training network) is relevant to the activities of ITU-T Study Group 16 and Focus Group on Artificial Intelligence for Health (FG-AI4H)

Future work

- Detection of different activities apart from fall detection, and recognize and report in the cases of anomalies
- Standardization of the proposed scheme at ITU-T SG16

Thank you