
Deviceless: A serverless approach
for the Internet of Things

6-10 December 2021

Thank you

Zakaria Benomar
Department of Engineering,
University of Messina,
Italy

Session: Invited paper

Thank you

Outlines

• Motivation
• Cloud and IoT integration
• Technology enablers
• Stack4Things architecture
• The rise of Serverless Computing
• Deviceless: extending Serverless to the network edge
• Use case: Node-RED extension
• Conclusions and future works

Motivation

• How to manage in a scalable and powerful way the proliferation
of (increasingly smarter) mobile and IoT devices?

IoT ecosystem
• Mobiles

• Cyber Physical Systems
• Smart appliances
• Sensors/Actuators

• Wearables
• Vehicles ...

Motivation

• Microcontroller boards
or single board
computers with

sensors/actuators
attached

to (analog/digital) gpio
pins or serial bus
• A wide range

of interfaces

• Smart objects providing
interactions with

physical world
• Wi-fi/bluetooth

connectivity

• Smartphones
with sensors on-

board
• Wi-fi/ bluetooth/ 3-4G

connectivity

Thank you

Cloud and IoT integration
(1) Data-oriented approach

• The Cloud is used to deal with IoT data management.
• IoT devices send data to the Cloud.
• The Cloud is leveraged as is.
• Apps are built on top of standard cloud facilities (e.g.,

VMs, storage, networking).
• Apps make use of stored (non-real time) IoT data
• the only operations permitted are data manipulation ones

(no interaction with the devices).
What about actuation operations?
• Data-centric-oriented solutions are based on sending all

the generated data towards a data center (such a solution
can incur significant operational expenditure in terms of
bandwidth, storage and processing cost).

Thank you

Cloud and IoT integration

• The application uses ad-hoc mechanisms to interact
with IoT devices (SDK-based solutions).

• No explicit interactions between Cloud components
and IoT infrastructure.

• Apps developers cannot share the IoT infrastructure.
• Each user has to set up its own infrastructure

(CAPEX/OPEX problems).
• Authorizations to deploy IoT nodes in public domains

for large-scale deployments can be hard to acquire
(e.g., smart cities).

• The approach is based also on sending all the IoT
data to the Cloud.

(2) Application-specific (vertical) approach

Thank you

Cloud and IoT integration

• Adapt the Cloud “as-a-Service” approach to IoT.
• Offer IoT infrastructures as a extension of a Cloud

deployment.
• Cloud users that have access abstracted VMs can also

access Virtual IoT nodes with attached sensors/actuators.
• Separation of concerns between infrastructure and

application (when needed) --> offer virtual IoT nodes with
virtualized sensors and actuators.

• Virtual IoT nodes can be deployed at the network edge (on
top of physical IoT nodes).

• Device computation offloading.
• Enabling a low-level abstraction of the IoT nodes and

resources (this is important for applications code portability)

(3) full thing “cloudification” (I/Ocloud)

Thank you

Cloud and IoT integration

• Virtual IoT nodes with Virtual File systems (clone of the real File
system) as:

• VMs with attached I/O pins.
• VNs (lightweight containers) with attached I/O pins

• Ready to use Cloud resources (networking, storage, compute…)
• VNs can be instantiated at the network edge to meet applications

demands (e.g., latency, privacy/security).
• Containers migration (from Cloud to Edge and vice versa)

(3) full thing “cloudification” (I/Ocloud)

• MPU-powered boards with Linux-based OSs.
• Physical pins are exposed through the File

system (standard system calls as for regular
files: write and read operations).

Thank you

Cloud and IoT integration

The Software Defined City paradigm
• Analogy with Software Defined Networking (SDN).
• Separation between the I/O layer (data plane) and the

Cloud layer (control plane).
• Extends the SD* approach to a cyber city system to

enable the re-configuration of the underlying
infrastructure.

• Several controllers exploit and implement the requested
node topologies through generalized rules and according
to predefined policies.

Thank you

Technology enablers

Thank you

Technology enablers

• IoT resource management service for OpenStack Clouds
• OpenStack (unofficial) project

• https://launchpad.net/iotronic
• https://opendev.org/x/iotronic

Thank you

Stack4Things architecture

• A Cloud OpenStack compatible subsystem called
IoTronic.

• A Device-side agent named Lightning-Rod.
• Communications between the Cloud and the devices

are based on WebSocket tunnels with a reverse
tunnelling mechanism to bypass NATs and firewalls.

Thank you

Stack4Things architecture

• Use of a software probe on the device-side
(lightning-rod)

• OpenStack compliant service (IoTronic)
• Use of WAMP and plain WebSocket control

channels
• REST interfaces

Thank you

The rise of Serverless Computing

• In the IaaS model, the user has to manage the server
configuration.

• The provisioning period of VMs and containers is long
even if the tasks to handle can be short in time.

 Significant increase in terms of cost.
• Serverless computing:

• Runs code in response to events (event-
programming model) --> Think about IoT

• Worry-less about servers (i.e., scalability).
• Users needs only to write the functions. All the

rest, is managed by the Cloud provider.
• The functions run on event-triggered and

ephemeral containers (may only last for one
invocation).

No servers to
provision

Just the code

Thank you

The rise of Serverless Computing

• Serverless is a cloud-native platform for short-running,
stateless computation and event-driven applications which
scales up and down instantly and automatically and
charges for actual usage at a millisecond granularity.

• Why is Serverless attractive?
• Making app development & ops dramatically faster,

cheaper, easier.
• Drives infrastructure cost savings.

• Comparison (based on AWS Frankfurt, Germany):
• AWS VM with a Linux OS: 1 vCPU, 2 GB memory:

$25.00 for one month
• AWS Lambda function execution (1ms) with 128 MB of

memory: $0.0105 for 5 million function execution.

Source: Jason McGee, IBM; Serverless Conference 2017.

Source: https://aws.amazon.com

Thank you

Deviceless: extending Serverless to the network edge

• Our approach, Deviceless is meant to extend the
Serverless computing model down to the network edge.

• Use a Serverless-like methods to interact with remote
sensors/actuators.

• In addition to IoT-as-a-Service provided by the I/Ocloud
paradigm, a user can use Deviceless.

• Provide event-programming model for I/Ocloud without
resorting to VNs provisioned for long periods (when not
needed).

• Deviceless functions/actions runs on ephemeral
stateless containers (may only last for one invocation).

• May help in the establishment of policies for “closing
the loop” for the applications.

• Configuring triggers for a range of (dispersed) actuators
based on sensing activities from geographically
distributed sensing resources.

Mechanisms to rewire such a “nervous system” into a
number of elastic control loops.

Sensors

Rules Workflows

Trigger

SD City as closed-loop system

Thank you

Deviceless: extending Serverless to the network edge

• We extended the functionalities of Qinling (the
Serverless subsystem in OpenStack) and Zun (the
subsystem responsible of managing containers).

• Integration of Qinling and Zun within S4T.
• Manage functions execution on IoT nodes.
• Use IoTronic as a new networking driver for Qinling:

• In Cloud-based deployments, Qinling uses the
overlay networking IP addresses to reach out the
containers.

• In our approach, the containers where functions
should be executed are deployed at the network
edge (behind NATs and firewalls).

• IoTronic uses Websocket tunnels to use the
remote containers and use an new id to identify
them.

Cloud-side architecture.

Board-side architecture.

Use case: Node-RED extension

• Node-RED is a is a flow-based development tool for
visual programming for wiring, hardware devices, APIs
and online services.

• It provides a browser-based flow editor to create
JavaScript actions.

• Users can create complex workflows by minimal effort
(drag and drop nodes from the left panel).

• While Node-RED have been found to be useful on its
own as data flow tool, several IoT scenarios require
the coordination of computing resources across a
distributed environment: on servers, gateways and
devices themselves.

• Node-RED cannot deal with workflows using a
distributed infrastructure.

Use case: Node-RED extension

• We exploited the Deviceless paradigm to extend
the capabilities of the Node-Red flow-based
development tool for visual programming.

• We added a new type of nodes that exploit,
underneath, the functions managed by Qinling.

• User can design workflows/pipelines among IoT
devices deployed at the network edge.

• The solution can also be used in conjunction with
the Cloud-based Serverless computing model.

• Instead of using only JavaScript to create
actions/functions, our approach extends the Node-
RED programming languages choices to include
other languages such as Python.

• Uses don’t have to setup the Node-RED service on
the IoT devices.

Use case: Node-RED extension

• CPU and RAM usage on a Raspberry Pi.
• The function used is a simple print on the screen.

Idle 10 requests

CPU RAM CPU RAM

Reverse proxy 0% 1.1% 3.4% 1.1%

WS tunnel
client

0% 4.1% 4.2% 4.1%

Zun agent 0% 9.7% 0% 9.7%

Lightning-Rod 0% 0.8% 0% 0.8%

Total 0% 15.7% 7.6% 15.7%

Conclusion and future work

• Presentation of the I/Ocloud approach.
• Introduction of the Deviceless paradigm.
• Extend Node-RED to use distributed IoT devices based on the Deviceless paradigm.
• The approach presented has been used to create monitoring applications as well as

genomic analysis.
• The “supplement 49 to ITU-t y.3500-series” outlines the efficiency of adopting the

Serverless computing model at the network edge.
• As future work, we would like to adapt the architecture of S4T and use it with the the

ETSI MEC architecture to orchestrate the execution of functions on the IoT devices.

Thank you!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

