ONLINE 2021

6-10 December 2021

Quantum key distribution networks for trusted 5G and beyond: An ITU-T standardization perspective

Taesang Choi, (ETRI, Korea); Hyungsoo Kim (KT, Korea); Jeongyun Kim (ETRI, Korea); Chun Seok Yoon (KT, Korea); Gyu Myoung Lee (Liverpool John Moores University, UK and KAIST, Korea)

Taesang CHOI

Electronic and Telecommunications Research Institute (ETRI)

Session: Invited paper

Contents

- Introduction
- QKD standardization in ITU-T
- Standards for QKDN in ITU-T SG13
 - Core Recommendations on QKDN and on-going work items on QKDN
- Pre-standardization activities in ITU-T FG-QIT4N
- Challenges for future standardization
- Conclusion

Introduction

- Quantum Key Distributions (QKD)
 - procedure or method for generating and distributing symmetrical cryptographic keys with information theoretical security based on quantum information theory (by ETSI)
- From QKD system to QKD network
- Related standardization bodies
 - ITU-T
 - ETSI ISG QKD
 - ISO/IEC JTC1/SC27
 - IETF/IRTF Quantum Internet Research Group

QKDN standardization in ITU-T

• QKDN concepts and their relation to a user network

 QKDN standardization aspects in the context of ITU-T

Ongoing and potential works

Standardization for QKDN in ITU-T SG13/17/11

ONLINE 2021

Y.3800: overview on QKDN

- This Recommendation specifies an overview on networks to support quantum key distribution (QKD) to address network aspects to implement QKD technologies.
 - an overview of QKD technologies;
 - network capabilities to support QKD;
 - Conceptual structure and basic functions of QKD networks (QKDN).

Y.3801: QKDN – Functional requirements

- This Recommendation is to specify functional requirements for QKDN:
 - Functional requirements for capabilities of quantum/key management/QKDN control and management layers and other capabilities for QKDN

Y.3802: QKDN – functional architecture

- This Recommendation specifies functional architectures of the QKDN.
 - Functional architecture model
 - Functional elements and reference points
 - Architectural configurations
 - Overall operational procedures

Y.3803: QKDN – Key management

- This Recommendation describes key management for QKDN which addresses technical specifications to help the implementation and operation.
 - Requirements of key management
 - Functional elements of key management
 - Procedures of key management
 - Key formats (key data and meta-data)

Y.3804: QKDN – Control and management

 This Recommendation is to specify the control, management, and orchestration for QKDN

- Functional requirements of QKDN control, management, and orchestration
- Management information model for QKDN
- Reference points of QKDN control, management, and orchestration
- Procedures of QKDN control, management, and orchestration

Y.3805: QKDN – Software Defined Networking Control

- This Recommendation covers:
 - Requirements for SDN control in QKDN;
 - Functional architecture of SDN control in QKDN;
 - Reference points of SDN control in QKDN;
 - Hierarchical SDN controller in QKDN;
 - Overall operational procedures of SDN control in QKDN

On-going work items on QKDN in ITU-T SG13

SG/Q	Work item
Q16/13	Y.QKDN_BM : Quantum key distribution networks – Business role-based models
	Y.QKDN_frint : Framework for integration of QKDN and secure storage network
	Y.QKDN-iwfr : Quantum key distribution networks – interworking framework
	Y.QKDN-ml-fra : Quantum key distribution networks – Functional requirements and architecture to enable machine learning
	Y.QKDN-rsfr : Quantum key distribution networks – resilience framework
	Y.supp.QKDN-roadmap : Standardization roadmap on Quantum Key Distribution Networks
Q6/13	Y.QKDN-QoS-pa: Quantum key distribution networks – QoS parameters
	Y.QKDN-QoS-fa: Functional architecture of QoS assurance for quantum key distribution networks
	Y.QKDN-QoS-ml-req: Requirements of machine learning based QoS assurance for quantum key distribution networks

Y.QKDN_BM: Business role-based models

- Y.QKDN_BM describes business roles, business role-based models, and service scenarios in a QKDN from different deployment and operation perspectives.
- Especially, Y.QKDN_BM identifies various business models that require security application services with a QKDN and exiting user networks.

Y.QKDN_frint: Integration of QKDN and secure storage network

- This Recommendation describes framework for integrating QKDN and secure storage network (SSN).
 - functional requirements for SSN;
 - functional architecture model of SSN;
 - reference points;
 - operational procedures;
 - phase-in scenarios.

Recently started work items

- Y.QKDN-iwfr
 - Constructing a large scale QKDN which covers wide area, it may consist of multiple QKDNs and they are interworking each other.
 - It mainly focuses on the interworking between QKDNs supported by multiple QKDN providers.
- Y.QKDN-ml-fra
 - For the functional requirements and architectures for a ML-enabled QKDN, it specifies the roles of ML in a QKDN.
 - It includes functional requirements and a functional architecture model of the ML-enabled QKDN.
- Y.QKDN-rsfr
 - It specifies the framework of resilience in a QKDN including the conceptual models of QKDN protection and recovery scenarios.
 - It also provides typical use cases of resilience and related requirements of resilience schemes supported by the quantum layer, the key management layer, and QKDN control and management layers, respectively.

QKDNs Interworking Scenarios

Architectural Variations of ML-enable QKDN

Strategy A (QKDN-optimization ML functions are all located in QKDN controller)

Data ingress (Input)
C: collector; PP: preprocessor; M: model; P: policy; D: Distributor; SRC: source of data; SINK: target of ML
Data egress (Output)
output; MLFO: ML function orchestrator; FCAPS: fault, configuration, accounting, performance and security:

Strategy B (QKDN-optimization ML functions are distributed in QKDN controller and QKDN manager)

Data ingress (Input)
C: collector, PP: preprocessor; M: model; P: policy; D: Distributor; SRC: source of data; SINK: target of ML
Data egress (Output)
output; MLFO: ML function orchestrator; FCAPS: fault, configuration, accounting, performance and security;

Strategy C (QKDN-optimization ML functions and ML sandbox are located in a new layer called ML layer)

Service for egress (producer)
C: collector; PP: preprocessor; M: model; P: policy; D: Distributor; SRC: source of data; SINK: target of ML
Service for ingress (consumer)
C: collector; PP: preprocessor; M: model; P: policy; D: Distributor; SRC: source of data; SINK: target of ML
output; MLFO: ML function orchestrator; FCAPS: fault, configuration, accounting, performance and security

QoS aspects in QKDN

- Y.QKDN-QoS-pa
 - It covers the descriptions of QoS and network performance in a QKDN, classification of performance concerns for which parameters may be needed, QoS parameters of a QKDN and network performance supporting factors.
- Y.QKDN-QoS-fa
 - It gives an overview of QoS assurance for a QKDN, a functional architecture of QoS assurance for a QKDN, reference points of functional architecture and procedures of QoS assurance for a QKDN.
- Y.QKDN-QoS-ml-req
 - It first provides an overview of requirements of ML-based QoS assurance for QKDN. It also describes a functional model of MLbased QoS assurance and followed by associated high level and functional requirements of ML-based QoS assurance.

Standardization roadmap on QKDN

- Y.supp.QKDN-roadmap
 - It describes the landscape with related technical areas of trust technologies from an ITU-T perspective and list up related standards and publications developed in other SDOs.

Pre-standardization activities in ITU-T FG-QIT4N

- Quantum Information Network
 - Quantum Computing
 - Quantum Communication
 - Quantum Sensing & Metrology
- Quantum Information Technology
 - Telecom/network aspects of QKDNs: SG13 (QKDN architecture aspect), SG17 (security of QKDN and applications of QRNG for security)
 - QIN technology and network evolution.

FG-QIT4N planned deliverables

WG		Deliverables	
WG0			
(Coordination	D0.1	QIT4N standardization landscape and outlook	
committee)			
WG1	D1.1	QIT4N terminology part 1: Network aspects of QIT	
(Network	D1.2	QIT4N use case part 1: Network aspects of QIT	
aspects of QIT)	D1.3	Implications of quantum information technology on networks	
	D1.4	QIT4N standardization outlook and technology maturity part 1: Network aspects of QIT	
WG2	D2.1	QIT4N terminology part 2: quantum key distribution network	
(QKDN)	D2.2	QIT4N use case part 2: quantum key distribution network	
	D2.3.1	QKDN protocols part I: Quantum layer	
	D2.3.2	QKDN protocols part II: key management, QKDN control layer and management layer	
	D2.4	QKDN transport technologies	
	D2.5	QIT4N standardization outlook and technology maturity part 2: quantum key distribution network	

Challenges as potential work items

- Support of QKDN interoperability
- Specifications of QKDN protocols
- Synchronization
- Multi-protocol connectivity
- The adoption of AI/ML to a QKDN
- Integration of user networks (e.g., 5G and beyond)
- Trusted-relay-based QKDN
- Scale up QKDN
- Towards QENS from QKDN

Conclusion

- Standardization activities in ITU-T SG13 and FG-QIT4N
 - The introduction of a QKDN into the current networks brings new challenges to the design of the network architecture and security considerations.
- Future standardization
 - Identified key challenges and potential work items for QENS
 - Considering trustworthy networking technologies and AI/ML techniques for cryptographic applications in 5G and beyond.
- For future work
 - Supporting trustworthy networking and services as well as cryptographic applications
 - Tightly integrating with 5G networks and beyond as user networks with QKD and QITs

ONLINE 2021

Thank you!

