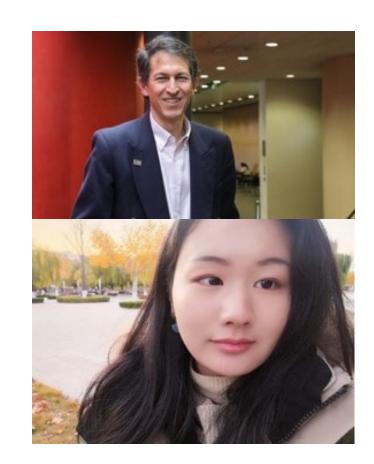
TUKALEIDOSCOPE ONLINE 2021

6-10 December 2021

Building a distributed XR immersive environment for data visualization

Fernando Beltrán

Jing Geng


Business School

University of Auckland, New Zealand

Session 5: Augmented reality and machine learning for future spatial applications and services

Paper S5.1: Building a distributed XR immersive environment for data visualization

• "The use of engaging, embodied analysis tools to support data understanding and decision making." – Dwyer (2018)

- "The use of engaging, embodied analysis tools to support data understanding and decision making." Dwyer (2018)
 - Builds upon
 - Data visualization
 - Visual Analytics
 - Virtual Reality
 - Computer Graphics
 - Human-computer Interaction

- "The use of engaging, embodied analysis tools to support data understanding and decision making." Dwyer (2018)
 - Builds upon
 - Data visualization
 - Visual Analytics
 - Virtual Reality
 - Computer Graphics
 - Human-computer Interaction
 - To support data understanding.

- "The use of engaging, embodied analysis tools to support data understanding and decision making." Dwyer (2018)
 - Builds upon
 - Data visualization
 - Visual Analytics
 - Virtual Reality
 - Computer Graphics
 - Human-computer Interaction
 - To support data understanding.
 - For either individual or collaborative decision-making.

 Using mixed-reality immersive technology, how to support more effective and higher quality decision-making in a business context that uses the richer structure of a network data set?

- Using mixed-reality immersive technology, how to support more effective and higher quality decision-making in a business context that uses the richer structure of a network data set?
- Decision makers must choose one or more "most important" nodes among the network nodes using several node-determined network centrality measurements and the power of being "immersed" in a visual environment

- Using mixed-reality immersive technology, how to support more effective and higher quality decision-making in a business context that uses the richer structure of a network data set?
- Decision makers must choose one or more "most important" nodes among the network nodes using several node-determined network centrality measurements and the power of being "immersed" in a visual environment

- More effective:
 - Compared to using 2D flat-screen visualization tools

- Using mixed-reality immersive technology, how to support more effective and higher quality decision-making in a business context that uses the richer structure of a network data set?
- Decision makers must choose one or more "most important" nodes among the network nodes using several node-determined network centrality measurements and the power of being "immersed" in a visual environment

- More effective:
 - Compared to using 2D flat-screen visualization tools
- Higher quality:

How to measure "quality decisions"

- Using mixed-reality immersive technology, how to support more effective and higher quality decision-making in a business context that uses the richer structure of a network data set?
- Decision makers must choose one or more "most important" nodes among the network nodes using several node-determined network centrality measurements and the power of being "immersed" in a visual environment

More effective:

Compared to using 2D flat-screen visualization tools

Higher quality:

How to measure "quality decisions"

Collaboration:

Geographical distance, temporal distance

Multi-user environment

• We built Aroaro, a mixed-reality, multi-user platform.

- We built Aroaro, a mixed-reality, multi-user platform.
- Aroaro supports our Immersive Analytics approach to business decision-making by:

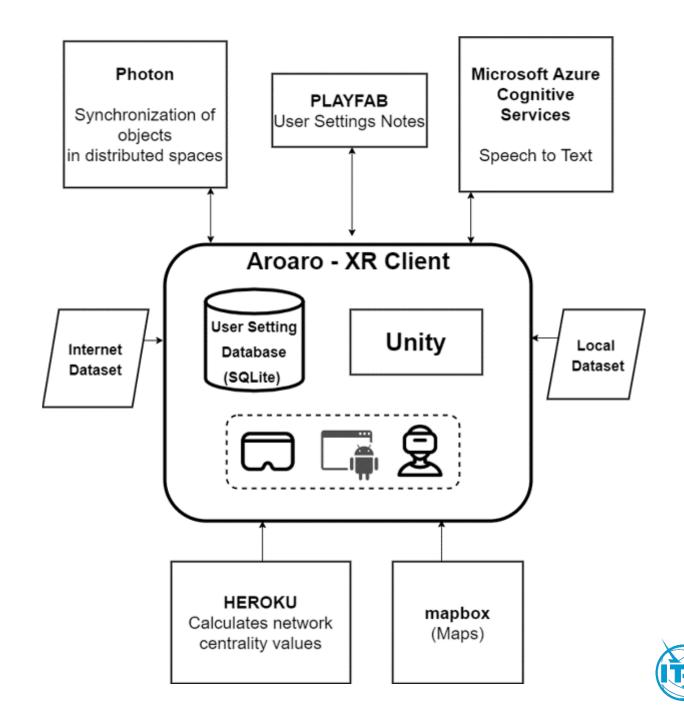
- We built Aroaro, a mixed-reality, multi-user platform.
- Aroaro supports our Immersive Analytics approach to business decision-making by:
 - Providing total spatial immersion to business decision makers.

- We built Aroaro, a mixed-reality, multi-user platform.
- Aroaro supports our Immersive Analytics approach to business decision-making by:
 - Providing total spatial immersion to business decision makers.
 - Supporting a virtualized environment with rich visualization of a network data set.
 - •

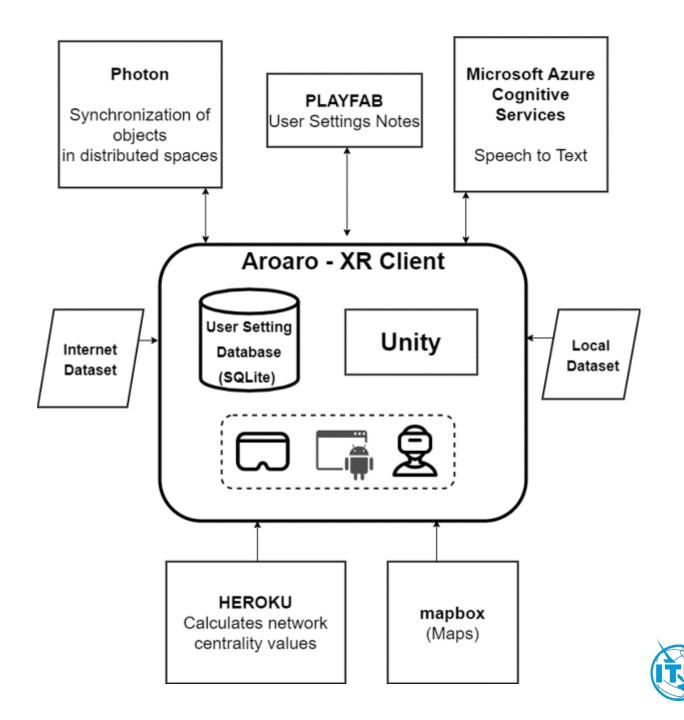
- We built Aroaro, a mixed-reality, multi-user platform.
- Aroaro supports our Immersive Analytics approach to business decision-making by:
 - Providing total spatial immersion to business decision makers.
 - Supporting a virtualized environment with rich visualization of a network data set.
 - Providing a collaborative virtual environment.

•

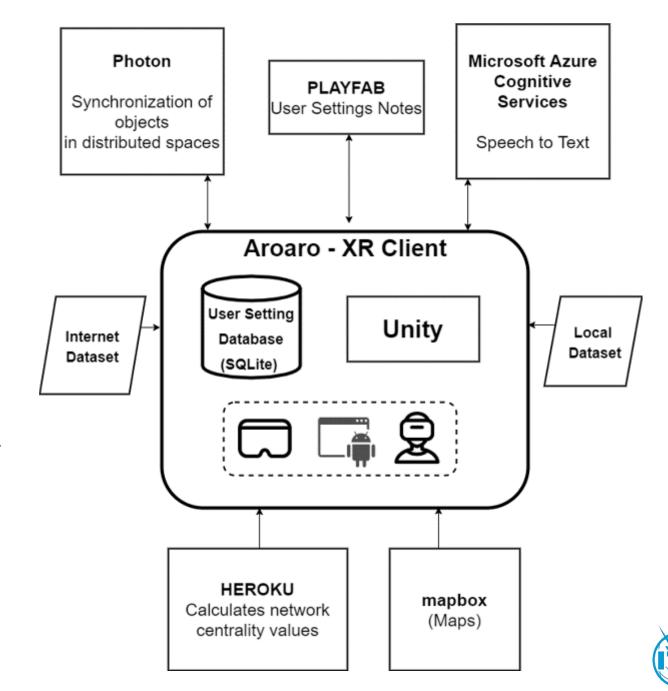
- We built Aroaro, a mixed-reality, multi-user platform.
- Aroaro supports our Immersive Analytics approach to business decision-making by:
 - Providing total spatial immersion to business decision makers.
 - Supporting a virtualized environment with rich visualization of a network data set.
 - Providing a collaborative virtual environment.
 - Supporting both synchronous and asynchronous collaboration.
- Combination of all these opportunities enhance the level of engagement in data-driven decision-making tasks.

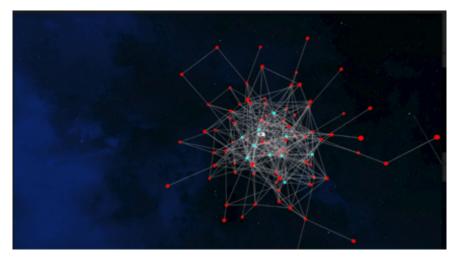

- We built Aroaro, a mixed-reality, multi-user platform.
- Aroaro supports our Immersive Analytics approach to business decision-making by:
 - Providing total spatial immersion to business decision makers.
 - Supporting a virtualized environment with rich visualization of a network data set.
 - Providing a collaborative virtual environment.
 - Supporting both synchronous and asynchronous collaboration.
- Combination of all these opportunities enhance the level of engagement in data-driven decision-making tasks.
- We conducted lab experiments to investigate the relative performance of subjects in an Aroaro's IA facility vis-à-vis a traditional 2D data visualization approach.

Aroaro architecture


- Aroaro uses Unity.
- The Microsoft Mixed-Reality Toolkit is used to provide client services.

Aroaro architecture

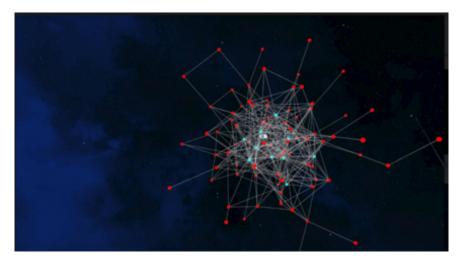

- Aroaro uses Unity.
- The Microsoft Mixed-Reality Toolkit is used to provide client services.
- Photon enables multiple users to work interactively in the same virtual space at the same time.
- Microsoft Azure Cognitive Services is used for speech-to-text conversion.


Aroaro architecture

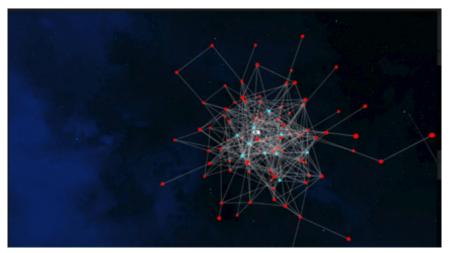
- Aroaro uses Unity.
- The Microsoft Mixed-Reality Toolkit is used to provide client services.
- Photon enables multiple users to work interactively in the same virtual space at the same time.
- Microsoft Azure Cognitive Services is used for speech-to-text conversion.
- PlayFab is a backend tool to provide user management and to store scene objects.
- Heroku hosts the code that calculates network measures such as centrality and other degree-based network properties.



• A network is made up of nodes and links.

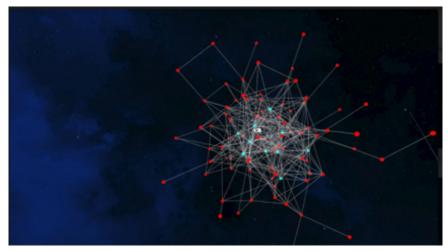


- A network is made up of nodes and links.
- It is used to model relationships between any entities such as individuals, groups, or organizations.





- A network is made up of nodes and links.
- It is used to model relationships between any entities such as individuals, groups, or organizations.
- Increasingly, more business activities and processes as well as human organizations and business structures can be described as networks.



- A network is made up of nodes and links.
- It is used to model relationships between any entities such as individuals, groups, or organizations.
- Increasingly, more business activities and processes as well as human organizations and business structures can be described as networks.
- Useful features that support our network data visualization take:
 - Optimal spacing of nodes and links in the scene
 - Ability to "fly" around, over, below and into the network
 - Query-oriented menu

• Question: Can a subject make better decisions in an immersive analytics-supported environment than on 2D visual platform?

- Question: Can a subject make better decisions in an immersive analytics-supported environment than on 2D visual platform?
- **Testing situation**: A fictitious marketing campaign with access to a network data set. Data is from a social network with two types of nodes: influencers and members.

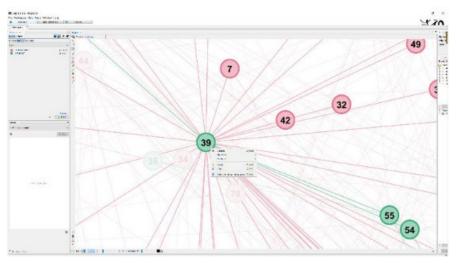
- Question: Can a subject make better decisions in an immersive analytics-supported environment than on 2D visual platform?
- **Testing situation**: A fictitious marketing campaign with access to a network data set. Data is from a social network with two types of nodes: influencers and members.
- Visualization tools: The same network data set to be visualized on two platforms
 - Aroaro: our XR environment
 - Gephi: a popular network data visualization platform

- Question: Can a subject make better decisions in an immersive analytics-supported environment than on 2D visual platform?
- Testing situation: A fictitious marketing campaign with access to a network data set. Data is from a social network with two types of nodes: influencers and members.
- **Visualization tools**: The same network data set to be visualized on two platforms
 - Aroaro: our XR environment
 - Gephi: a popular network data visualization platform
- 15 participants 12 questions split in two sets of corresponding questions

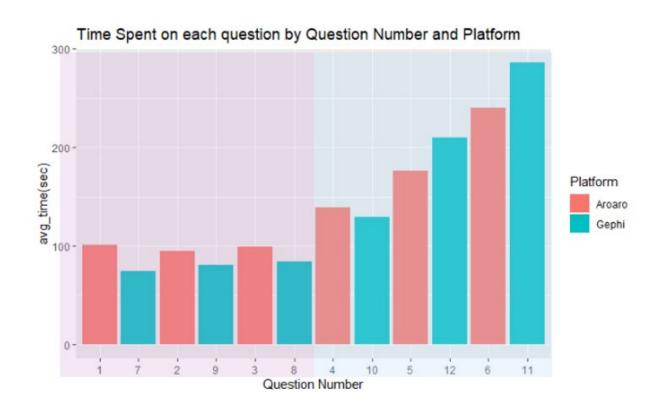
- Question: Can a subject make better decisions in an immersive analytics-supported environment than on 2D visual platform?
- Testing situation: A fictitious marketing campaign with access to a network data set. Data is from a social network with two types of nodes: influencers and members.
- Visualization tools: The same network data set to be visualized on two platforms
 - Aroaro: our XR environment
 - Gephi: a popular network data visualization platform
- 15 participants 12 questions split in two sets of corresponding questions
 - Randomly assigned participants into two groups: Aroaro-first group, Gephi-first group.

- Question: Can a subject make better decisions in an immersive analytics-supported environment than on 2D visual platform?
- Testing situation: A fictitious marketing campaign with access to a network data set. Data is from a social network with two types of nodes: influencers and members.
- Visualization tools: The same network data set to be visualized on two platforms
 - Aroaro: our XR environment
 - Gephi: a popular network data visualization platform
- 15 participants 12 questions split in two sets of corresponding questions
 - Randomly assigned participants into two groups: Aroaro-first group, Gephi-first group.
 - First 3 questions: low cognitive effort (LCE); remaining 3 questions, high cognitive effort (HCE).



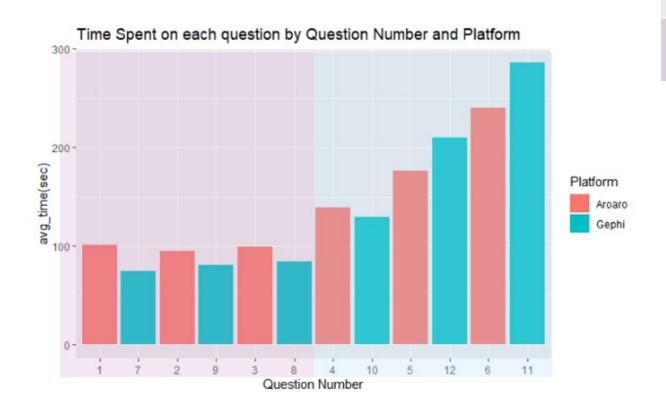


Experiment Snapshot



Results of Experiments:

Time Spent on LCE and HCE questions on each platform

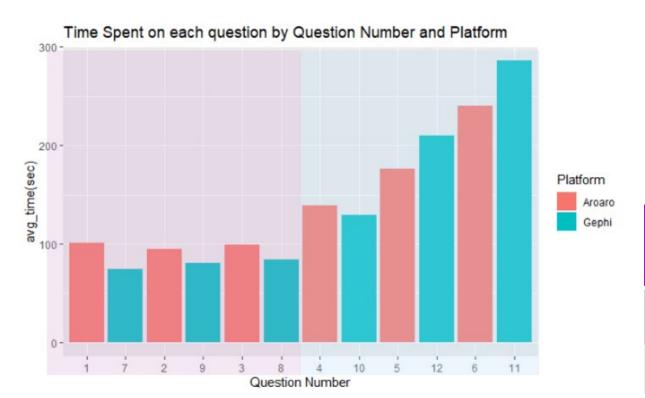


Results of Experiments:

Time Spent on LCE and HCE questions on each platform

Average Quality of Decision

	Question Type	
Platform	LCE	HCE
Aroaro	0.81	2.21
Gephi	0.76	2.00



Average Quality of Decision

Results of Experiments:

Time Spent on LCE and HCE questions on each platform

	Question Type	
Platform	LCE	НСЕ
Aroaro	0.81	2.21
Gephi	0.76	2.00

Average Quality of Decision by Participant Groups

Participant Groups	Questions in Aroaro	Questions in Gephi
Aroaro-first	1.44	1.33
Gephi-first	1.56	1.42

Concluding: What can network data visualization do for a decision maker?

- Aroaro's network data visualization engine:
 - Enhances users' understanding of relations between nodes and links.
 - Enhances users' understanding of network connectivity.
 - Helps users to discover hidden information and relations.
- All of the above while providing multiple visual perspectives.
- Our results point at higher quality decisions when decision makers face High Cognitive Effort (HCE) questions.
- Also, it helps decision makers overcome cognitive roadblocks in the process of discovering associations, relations and features of the network data.

TUKALEIDOSCOPE ONLINE 2021

Thank you!

f.beltran@auckland.ac.nz gjin955@aucklanduni.ac.nz

