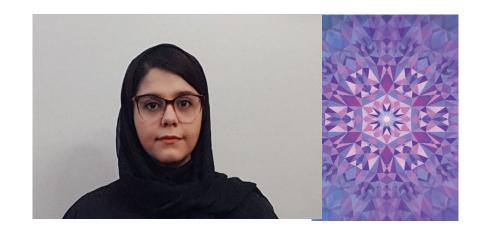
ITUKALEIDOSCOPE ONLINE 2021


6-10 December 2021

A review of network slicing in 5G and beyond: Intelligent approaches and challenges

Ghazal Rahmanian¹

Hadi Shahriar Shahhoseini¹ AmirHossein Jafari Pozveh^{1,2} ¹Iran University of Science and Technology ²Iran Mobile Communications Company (MCI)

Session 6: Machine learning for next generation wireless network

Paper S6.2: A review of network slicing in 5G and beyond: Intelligent approaches and challenges

Outline

- 5G Networks
- Network Slicing in 5G
- Slicing Standards
- Artificial Intelligence in 5G networks
- The proposed model

Conclusion

5G Networks at a glance

5G network:

- Wide range of services and devices
- High speed data transfer
- Existing networks with conventional design

The goal:

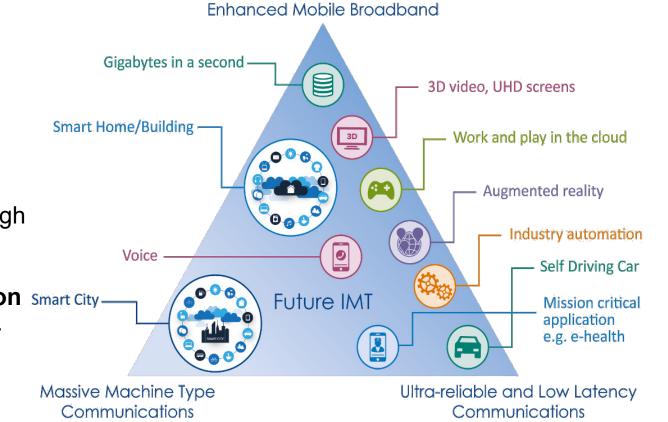
- minimizing the total cost of network infrastructure
- maximizing system performance and efficiency

Enabling technologies:

- □ Software defined network (SDN)
- Network function virtualization (NFV)

The goal:

- Having are flexible and highly adaptable network
- Handling a variety of services simultaneously

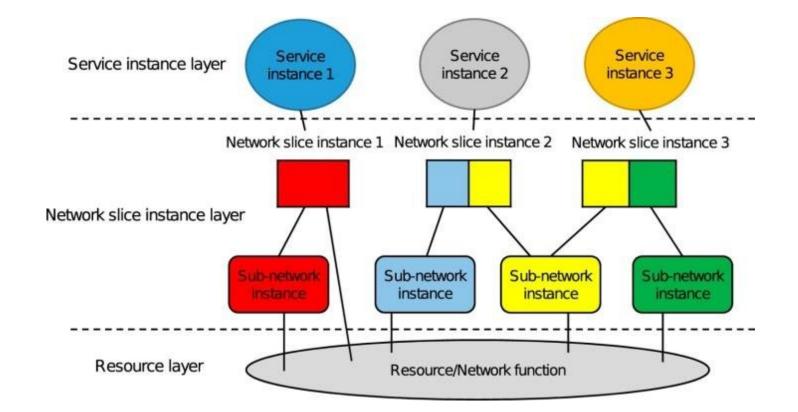


5G Network (Service Categories)

Main applications for 5G networks fall into <u>three</u> categories:

- Massive Machine Type Communication (mMTC): Smart city, etc.
- Enhanced mobile broadband (eMBB):ultra-high definition video, 3D video, etc.
- Ultra-reliable and low latency Communication Smart City-(URLLC): Driverless, industrial automation, etc.

Network Slicing in 5G (Concept and Architecture)


Network Slicing:

An E2E logical subnet including

- 1. Core Network
- 2. Radio Access Network
- 3. Transport Network

Architecture of network Slicing:

- 1. Service instance layer
- 2. Network slice instance layer
- 3. Resource layer

The NGMN 5G White Paper

Network Slicing in 5G (Top companies)

 Ericsson and Deutsche Telekom

 share slice of success in 5G on

 demand video service trial

NOKIA IIParallel WIRELESS

HUAWE

Slicing Standards

There are many standards considering **slicing** in different parts of the network. Here we have brought a number of these standards:

Radio Access Network:3GPP RAN

Release 15:

Present Key principles for supporting network slicing in NG-RAN, enhancement of some implementation dependent features.

Transport Network: ITU-T SG15

The international standards (ITU-T Recommendations) developed by **Study Group 15.**

Mobile Core Network: 3GPP SA

Release 15:

Considering basic network slice features **Release 16:** enhancements of network slicing

enhancements of Service-based Architecture (SBA) higher flexibility and better modularization full-scale virtualization

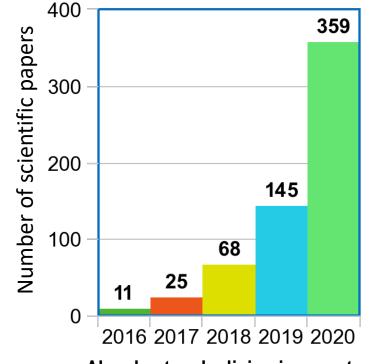
Release 17:

Several parameters of the GST parameters studied in order to keep SLS

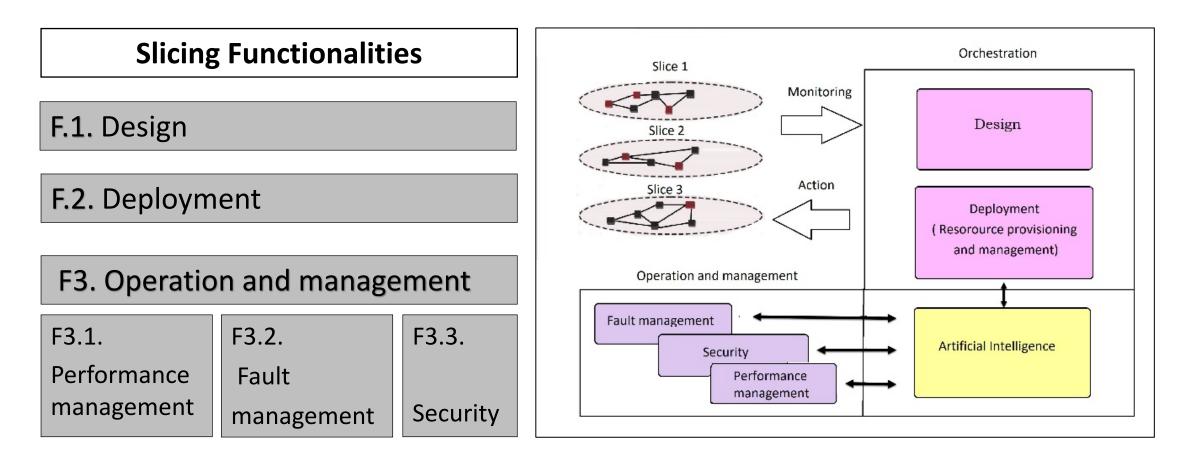
Artificial Intelligence: Special Groups for Al

AI has become so widespread that Standardization Bodies have formed some specific ICT groups for standardization of AI.

Some of these specific groups are as follows:



Artificial Intelligence (In Network Slicing)



Al and network slicing in recent years

The Proposed Model

F.1. Design

- The first step to have an efficient network
- Answering distinct service needs defined in 5G network
- Processing vast amount of data includes User needs and requirements, working environment and service goals

F.2. Deployment

Network **resource provisioning and allocation**:

- Under Provisioning: violating Service Level Agreement (SLA)
- Over Provisioning: Wasting resources
- 2 types of approaches:
- Policy-based
- Auction-based

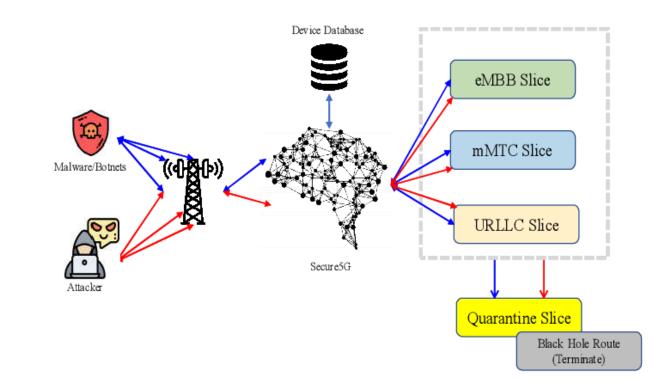
F.3. Operation and Management

F.3.1. Performance management:

- Admission control: whether network can accept or reject the upcoming slice request
- A wide resource sharing
- A limited resource sharing

F.3.2. Fault management:

- Analyzing the System activities, classifying as normal and flawed
- Recognizing usual and unusual user behavior and traffic
- Locating the precise location of error
- Trying to fix the flaws


F.3. Operation and Management

F.3.3. Security:

- Analyzing the traffic, service requests and status of slice
- Spotting security vulnerabilities and detecting attacks in the slice
- Taking the proper action against threats and attacks

An effective action against attacks:

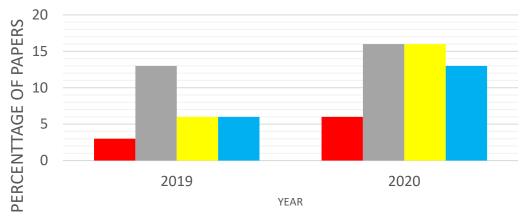
 Quarantining the contaminated slice to restrict the attack and it's following damage to other slices

Artificial Intelligence (AI) Algorithms

Supervised Learning (A1)	Unsupervised Learning (A2)	Reinforcement Learning (A3)
Nearest Neighbor	k-means clustering	Q-Learning
Naive Bayes	Association Rules	Temporal Difference
Decision Trees	t-Distributed Stochastic	Deep Adversarial Networks
Support Vector Machines	Neighbor Embedding	Monte-Carlo Tree Search
Neural Networks	Association rule	Asynchronous Actor-Critic
Linear Regression		Agents
Logistical Regression		
Random Forest		
Gradient Boosted Trees		

Al Algorithms (Applied in different functionalities)

	A1. Supervised	A2. Unsupervised	A3. Reinforcement Learning
F1. Design	60%	20%	20%
F2. Deployment	21.7%	4.1%	74.1%
F3. Operation & Management	41%	16%	41%



Conclusion

ONLINE 2021

We found about half of the papers in this subject have studied AI algorithms in the **F.2.Deployment**. This might be due to high AI applicability in **resource provisioning and allocation** which are the main functions of deployment.

The further comparison between other functionalities is depicted in the figure below.

Design Performance management Fault management security

Slicing Functionalities F.1. Design 6.9% F.2. Deployment 42.3% F3. Operation and management F3.1. F3.2. F3.3. Performance Fault Security 19.5% 13.8% 17.5%

Percentage of researchers focus on applying AI in different functionalities

In the paper we did the following items which some of the important ones have been described in this presentation.

- Reviewing 5G network, network slicing concepts, service categories and architecture
- □ Highlighting the specific working groups for AI in the ICTs standardization bodies
- Investigating Critical role of AI techniques in network slicing automation
- Proposing a functionalities model for AI-based network slicing
- Exploring the researchers focus on applied AI in network slicing functionalities

ONLINE 2021

Thank you!

