14TH ITU ACADEMIC CONFERENCE

EXACTION SCOPEACCRA2022

Towards computing and network convergence: QoE-oriented service anycast based on SRv6

7-9 December 2022 Accra, Ghana

Zicheng Wang

Inspur Communications Technology Co., Ltd.

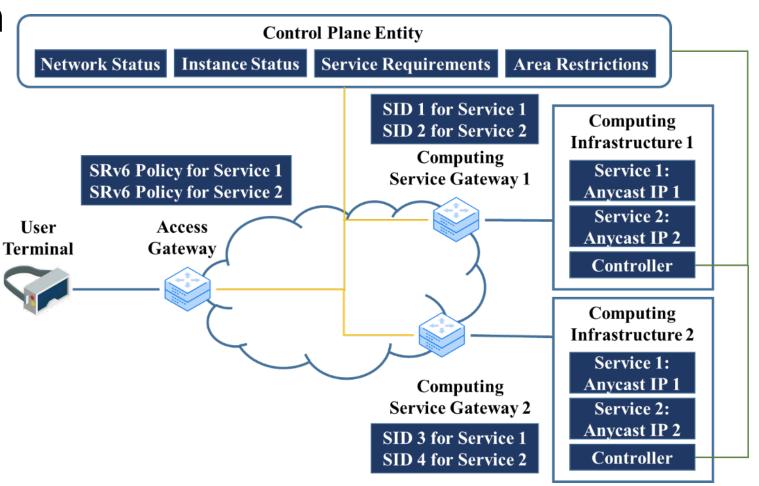
Session 1 – Some perspectives on future networks
Paper S1.2

Background

- XR apps bring great challenges to terminal performance and energy consumption.
- Cloud XR and Edge Cloud XR have been proposed.
- The cloud native system makes it possible to distribute XR applications based on microservices.
- In the foreseeable future, XR apps will be deployed on a highly distributed computing infrastructure.
- The network infrastructure is not ready for it.

Motivation

- DNS lacks support for highly distributed services.
- Service resource selection is unaware of user's QoE.
- New requirements for the network
 - Service Resource Discovery
 - QoE Oriented Service Instance Selection
 - Seamless Mobility and Service Continuity

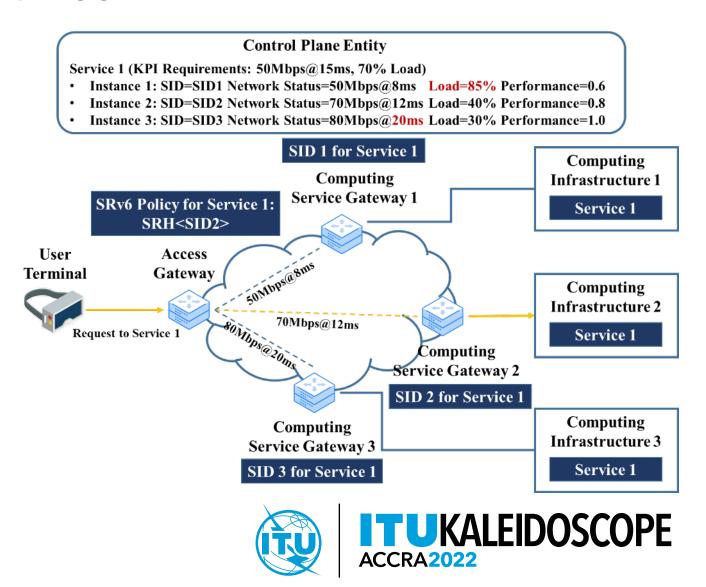

Related Works

- Edge computing enabling architecture in 3GPP
 - Network capabilities exposure, edge computing service discovery
- Named Data Networking
 - Addressing data instead of host
- Anycast
 - Effective for single-round-trip service
- CFN Dyncast
 - Modified BGP advertisement and session affinity

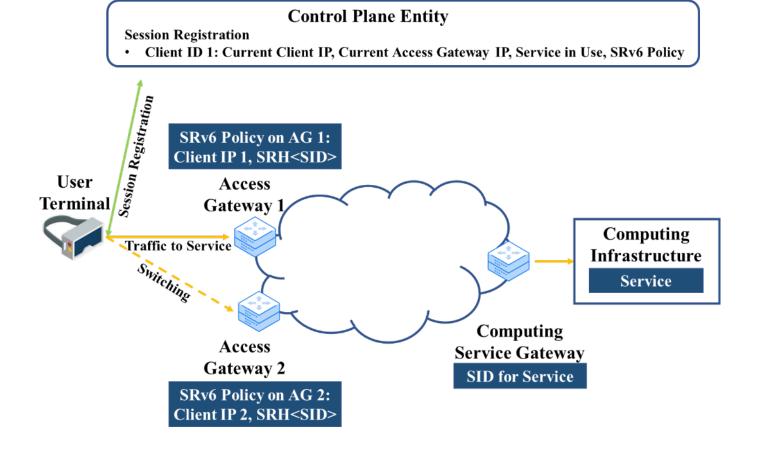
Architecture Design

- Fundamental: Use traffic engineering to direct service traffic to anycast hosts through the control plane.
- Access Gateway: Execute SRH encapsulation and forwarding according to the policy issued by the control plane.
- Computing Service Gateway:
 Remove the SRH in the packet and forward it to the corresponding service instance, according to the SID.
- Control Plane: QoE-related status information collection and SRv6 policies configuration.

Service Resource Discovery


- Predefined Computing Service
 Gateway SIDs for Service
- The control plane discovers service resources based on SID advertisement.

Anycast IP Address of Service Instance	
IP Prefix	Interface ID
Reserved Globally	Service ID
SID of Computing Service Gateway	
Locator	Function
Allocated By ISP	Service ID


QoE-oriented Load Balance

- Predefined SLA
- Network status maintained by control plane
- Computing nodes status obtained from computing infrastructure
- Real-time SRv6 policy decision
 - Priority for stateful service
 - ECMP for stateless service

Service Continuity

- Session Registration
- User dedicated SRv6 policy assignment

Conclusions

- An overlay service anycast system is proposed to enable the distributed XR apps from the perspective of network.
- Related recommendation:
 - ITU-T Y.2501 Computing power network Framework and architecture
- Related work item:
 - ITU-T SG13 Y.IMT2020-CNC-req
 - ITU-T SG13 Y.IMT2020-QoS-CNC-req
- This paper provides a preliminary technical solution.

