

Performance analysis of Vehicular Platoon considering V2V Communication

基于车车通信的车辆队列性能分析

Keqiang LI 李克强 State Key Lab. of Automotive Safety and Energy 汽车安全与节能国家重点实验室 Tsinghua University 清华大学

Outline

Background

Problem Statements

Performance Analysis considering V2V communication

Conclusions

Outline

Background

Problem Statements

Performance Analysis considering V2V communication

Conclusions

□ History of Adaptive Cruise Control (ACC)

- Bosch Ltd, developed the first prototyping ACC
- Mercedes Benz first to offer ACC, called Distronic system

Next Generation of ACC

- V2V/V2I communication
- Multi-vehicle cooperative control (e.g., Vehicular Platoon, CACC)

Potential Benefits

- Short following distance for better traffic capacity
- Faster reaction to leader fluctuation to reduce potential congestion
- Reduced aerodynamic resistance for better fuel economy and less emission
- More reliable automation for comfortable mobility

- Platoon: Topics and Researchers
 - Research topics
 - 1) Selection of spacing policies; 2) Communication delay; 3) Vehicle dynamic uncertainty; etc.
 - Researchers
 - 1) U.S.: J. Hedrick, P. Seiler, S. Darbha, Huei Peng etc.
 - 2) Europe: Jeroen Ploeg, N. van de Wouw, H. Nijmeijer, etc.
 - 3) China: Keqiang Li, Feng Gao, etc.

Platoon: Experiments

US: PATH

Europe: SARTRE

Japan: Energy ITS

Platoon: Key Tasks

- 1. Model and design of a platoon system with a broad types of topologies.
- 2. Performance analysis of different topologies on platoons.

Outline

Problem Statements

Performance Analysis considering V2V communication

Conclusions

Modeling of Platoons from the viewpoint of Networks of Dynamical Systems

From Control Perspective

- 1. Dynamics + Communication
- 2. Control Theory + Graph Theory

Research topics

- 1. Dynamic: single integrator, double integrator, linear dynamic, nonlinear dynamic
- **2. Communication**: data rate, switching topology, time-delay

Applications

A vehicular platoon can be viewed as a one-dimensional network of dynamical system

Modeling of Platoons under the Four-component Framework

- > **Vehicle Dynamics:** The vehicle dynamics describe the behavior of each node;
- Formation Geometry: The formation geometry dictates the desired distance between any two successive nodes.
- Distributed Controller: The distributed controller implements feedback control for each vehicle;
- Information Flow Topology: The information flow topology defines how nodes exchange information with each other;

Model for Vehicle Longitudinal Dynamics

> Linear Dynamics

$$\dot{x}_{i}(t) = Ax_{i}(t) + Bu_{i}(t)$$
$$x_{i}(t) = \begin{bmatrix} p_{i} \\ v_{i} \\ a_{i} \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -\frac{1}{\tau} \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\tau} \\ \frac{1}{\tau} \end{bmatrix}$$

- Feedback linearization technique is used to convert the nonlinear model into a linear one;
- The vehicle dynamics is assumed to be homogeneous.
- Model for Formation Geometry

$$\begin{cases} \lim_{t \to \infty} \|v_i(t) - v_0(t)\| = 0, \quad i = 1, 2, \dots N \\ \lim_{t \to \infty} \|p_{i-1}(t) - p_i(t) - d_{i-1,i}\| = 0 \end{cases}$$

- Constant distance (CD) policy
- Constant time headway (CTH) policy
- Nonlinear distance policy

Model for information flow topology

The V2V communication can generates various information flow topologies.

- a) Predecessor following topology;
 - \rightarrow PF topology
- b) Predecessor-leader following topology;
 → PLF topology
- c) Bidirectional topology;
 - \rightarrow BD topology
- d) Bidirectional-leader topology;
 - \rightarrow BDL topology
- e) Two predecessors following topology
 → TPF topology
- f) Two predecessor-leader following topology
 - \rightarrow TPLF topology

Model for information flow topology

Algebraic Graph Theory

- ✓ Viewed as a directed graph G, and use Pinning matrix, Adjacent matrix and Laplacian matrix to model the connections.
- ✓ The communication is assumed as to be perfect. There is no delay, data loss etc.

Definitions

• Pinning Matrix

To model the information flow from the leader to followers

$$\mathcal{P} = \begin{bmatrix} \mathcal{P}_1 & & \\ & \ddots & \\ & & \mathcal{P}_N \end{bmatrix}$$
$$\mathcal{P}_i = 1 , if \{\alpha_0, \alpha_i\} \in E$$

 Adjacent Matrix
 To model the information flow among followers • Laplacian Matrix An induced matrix from adjacent matrix

$$\mathcal{A}_{N} = \begin{bmatrix} a_{ij} \end{bmatrix} \in \mathbb{R}^{N \times N}$$
$$\begin{cases} a_{ij} = 1, if \ \{\alpha_{j}, \alpha_{i}\} \in E \\ a_{ij} = 0, if \ \{\alpha_{j}, \alpha_{i}\} \notin E \end{cases}$$

$$\mathcal{L} = \begin{bmatrix} l_{ij} \end{bmatrix} \in \mathbb{R}^{N \times N}$$
$$l_{ij} = \begin{cases} -a_{ij} & , \quad i \neq j \\ \sum_{k=1}^{N} a_{ik} & , \quad i = j \end{cases}$$

Model for information flow topology

Example 1: Bidirectional Topology

Model for Distributed Controller

> Linear State Feedback Controller

$$u_{i}(t) = -\sum_{j \in \mathbb{I}_{i}} \left[k_{p} (p_{i} - p_{j} - d_{i,j}) + k_{v} (v_{i} - v_{j}) + k_{a} (a_{i} - a_{j}) \right]$$

- > The local controller in node *i* only uses its neighborhood information specified by I_i .
- The controller is assumed to be linear for the convenience on theoretical analysis.
- The controller in each node is assumed to be homogeneous.
- Formulation for the Closed-loop Dynamics of Platoons
 - ➤ Tracking error $\tilde{x}_i(t) = x_i(t) x_0(t) \tilde{d}_i$, $\tilde{d}_i = \begin{bmatrix} d_{0,i}, 0, 0 \end{bmatrix}^T$
 - ► Collective state vector $X = [\tilde{x}_1^T, \tilde{x}_2^T, \dots, \tilde{x}_N^T]^T \in \mathbb{R}^{3N \times 1}$,
 - ➤ Collective input vector $U = [u_1, u_2, \cdots, u_N]^T \in \mathbb{R}^{N \times 1}$,
 - > Controller $U = -(\mathcal{L} + \mathcal{P}) \otimes k^T \cdot X$ $k = [k_p, k_v, k_a]^T$, \otimes is Kronecker product.
 - ▷ Closed-loop Dynamics of platoon $\dot{X} = \{I_N \otimes A (\mathcal{L} + \mathcal{P}) \otimes Bk^T\} \cdot X$

Unified Closed-loop Dynamics of Platoons $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes B_{L}^{T}\}$ Information Flow Topolog **Distributed Controller** Controller C_i C_{i-1} \mathbf{C}_N C_1 V₀ u_{i-1} u_N u_1 U; $d_{r,i}$ $d_{des,i}$ node Vehicle Dynamics Formation Geometry

Questions

Q1. What' the stabilizing region of controller gain *k* under different information flow topologies?

Q2. How to choose topology and design controller to improve stability?

Outline

Background

Problem Statements

Performance Analysis considering V2V communication

Conclusions

Performance Definition

- Closed-loop Stability: A platoon with linear time-invariant dynamics is said to be closed-loop stable if and only if the closed-loop system has eigenvalues with strictly negative real parts
- Stability Margin: The stability margin of a platoon is defined as the absolute value of the real part of the least stable eigenvalue, which characterizes the convergence speed.

1. Stability Region Analysis

Unified Closed-loop Dynamics for vehicular platoons

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\} X$

Requirements of Closed-loop Stability

 $\operatorname{Re}(\sigma_i(I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T)) < 0$

$$I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T \in \mathbb{R}^{3N \times 3N}$$

- ✓ large-scale matrix, which is difficult to analyze directly.
- Dynamic decouple by using similarity transformation
 - ✓ Key step: to decompose the large-scale vehicular platoon into multiple subsystems, which is easier to handle the closed-loop stability

$$S(I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T) = \bigcup_{i=1}^N \{S(A - \lambda_i Bk^T)\}$$

- $S(\cdot)$ is the spectrum of a matrix.
- λ_i is the eigenvalue of $\mathcal{L} + \mathcal{P}$

 ✓ Multiple small-scale matrix, whose size is equal to that of node dynamics (n=3).

1. Stability Region Analysis

Dynamic decouple by using similarity transformation

$$S(I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T) = \bigcup_{i=1}^N \{S(A - \lambda_i Bk^T)\}$$

Routh–Hurwitz stability criterion

It needs λ_i to be positive real number.

$$\begin{cases} k_p > 0 \\ k_v > k_p \tau / (\lambda_i k_a + 1) \\ k_a > -1 / \lambda_i \end{cases}$$

20

1. Stability Region Analysis

Consider a homogeneous platoon with linear controllers given by

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\} X$

(1.1) If graph *G* satisfies certain conditions (all the eigenvalues of $\mathcal{L} + \mathcal{P}$ are positive real numbers), the platoon is asymptotically stable if and only if

$$\begin{cases} k_p > 0 \\ k_v > k_p \tau / \min(\lambda_i k_a + 1) \\ k_a > -1 / \max(\lambda_i) \end{cases}$$

Remarks

- > λ_i is the eigenvalue of $\mathcal{L} + \mathcal{P}(\lambda_i \text{ need to be positive real number}).$
- This result can cover a lot of information flow topologies, including all the aforementioned topologies
- > The influence of information flow topology on stability is mainly reflected by λ_i .

2. Scaling trend of Stability Margin with increasing platoon size

Consider a homogeneous platoon with linear controllers given by

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\} X$

- (2.1) if the graph G is in Bidirectional topology, then the stability margin of platoons decays to zero as $O(1/N^2)$
- (2.2) if the graph G is in BDL topology, then the stability margin of platoons is always bounded away from zero.

3. Stability Margin Improvement – Topology Selection
 Consider a platoon with linear controllers given by

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\} X$

(3.1) if the graph *G* is undirected, to maintain bounded stability margin, it needs at least lots of followers (i.e. $\Omega(N) = O(N)$) to obtain the leader's information.

Remarks

➢ BD topology is a special case, i.e., Ω(N)=1, for which the stability margin decays to zero as the platoon size increases;

It implies that the information flow from the leader is more important than that among the followers.

- **3. Stability Margin Improvement** Topology Selection
- ✓ To maintain bounded stability margin, the tree depth of graph *G* should be a constant number and independent of the platoon size N.
 - Tree dpeth $c = \max\{n_1, n_2 n_1, \dots, n_p n_{p-1}, N n_p + 1\}$, where $\{n_1, n_2, \dots, n_p\}, 1 \le n_1 \le n$
 - $\cdots \leq n_p \leq N$ is the set of followers pinned to the leader

3. Stability Margin Improvement – Topology Selection

It is the tree depth c rather than local communication range h that dominates the stability margin.

Extending information flow to reduce the tree depth is one major way to guarantee a bounded stability margin.

3. Stability Margin Improvement – Asymmetric Control

Consider a homogeneous platoon under the BD topology with the asymmetric controller architecture given by

$$\dot{X} = \{I_N \otimes A - (\mathcal{L}_{BD} + \mathcal{P}_{BD})_{\epsilon} \otimes Bk^T\}X$$

(3.1) For any fixed $\epsilon \in (0,1)$, the stability margin is bounded away from zero and independent of the platoon size *N* (*N* can be any finite integer).

> Asymmetric control

The controller is called asymmetric, if

$$\begin{cases} k_i^f = (1+\epsilon)k, k_i^b = (1-\epsilon)k & i = 1, \cdots, N-1 \\ k_N^f = (1+\epsilon)k, \end{cases}$$

where $\epsilon \in (0,1)$ is called the asymmetric degree. Note that if $\epsilon = 0$, then it is reduced to the symmetric case.

3. Stability Margin Improvement – Asymmetric Control- **Proof Eigenvalue Analysis** Im $|sI - (A - \lambda_i Bk^T)| = s^3 + \frac{\lambda_i k_a + 1}{\tau} s^2 + \frac{\lambda_i k_v}{\tau} s + \frac{\lambda_i k_p}{\tau}.$ Stability Margin Stability Margin $d_{\min} = |\text{Re}(s_{\min})| = O(\lambda_{\min}).$ For asymmetric control $d_{\min} = O(\lambda_{\min}) = \text{constant number}$, For any fixed $\epsilon \in (0,1)$

Independent with size

- **Tradeoff between Convergence Speed and Transient Performance**
 - ➢ Benefit: bounded stability margin, → good for convergence speed
 - Cost: overshooting phenomena in transient process.

The stability margin of a platoon with asymmetric controllers is indeed bounded away from zero and independent of with the platoon size.

Space errors for homogeneous platoon under BD topology with different asymmetric degree ϵ . (a) ϵ =0 (symmetric); (b) ϵ =0.2; (c) ϵ =0.4; (d) ϵ =0.6

4. Linear Stable Controller Design - solving a Riccati equation
 Consider a homogeneous platoon with linear controllers given by

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\}X$

Stability Region

$$\begin{cases} k_p > 0\\ k_v > k_p \tau / \min(\lambda_i k_a + 1)\\ k_a > -1 / \max(\overline{\lambda}_i) \end{cases}$$

How to choose a specific controller gain?

> Controller design by solving a Riccati equation

Choosing the controller gain as $k^T = \alpha B^T P_{\varepsilon}$

 $A^T P_{\varepsilon} + P_{\varepsilon} A - P_{\varepsilon} B B^T P_{\varepsilon} + \varepsilon I_3 = 0,$

Influence of Information flow topology

Closed-loop Stability requirements

$$\alpha \geq \frac{1}{2\min_{i \in \mathcal{N}} (\lambda_i)}$$

Outline

Background

Problem Statements

Performance Analysis considering V2V communication

Conclusions

Conclusions

Vehicular platoon can bring many potential benefits, e.g.,

- Improving traffic capacity; Enhancing highway safety; Reducing road congestion
- V2V communication can generate various types of topologies for platoon.
- For vehicular platoons under "homogeneity + linear feedback"

> 1) Stability Region Analysis

• Explicitly established the stabilizing thresholds of linear controller gains for platoons under different information flow topologies.

> 2) Stability Margin Scaling Trend

• Obtained stability margin scaling trend for platoons under two typical topologies, i.e., Bidirectional Topology and Bidirectional-leader Topology.

> 3) Stability Margin Improvement

 Proposed two basic ways to improve the stability margin, i.e., topology selection and controller adjustment.

4) Linear Stable Controller Design

• Converted the platoon control problem to a parametric algebraic Riccati equation. The designed controllers can guarantee the internal stability for a variety of topologies

Thanks for your attention

Q & A?

- Robust Performance
- > Disturbance with Finite Energy
 - 1. First-to-last amplification factor (AF_{f2l})

$$AF_{f2l} = \sup \frac{\|\tilde{p}_N\|_{\mathcal{L}_2}}{\|w_1\|_{\mathcal{L}_2}} = \|G_{f2l}(s)\|_{\mathcal{H}_{\infty}}$$

$$\|w_i(t)\|_{\mathcal{L}_2} = \int_0^{+\infty} (w_i(t))^2 dt < \infty$$

2. All-to-all amplification factor(AF_{a2a})

$$AF_{a2a} = \sup \frac{\|\tilde{p}\|_{\mathcal{L}_2}}{\|W\|_{\mathcal{L}_2}} = \|G_{a2a}(s)\|_{\mathcal{H}_{\infty}}$$

Dynamics in Frequency domain

Time domain $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\} \cdot X + B \cdot W \qquad Y = C \cdot X$

Frequency domain

$$G(s) = \frac{\mathcal{L}(Y)}{\mathcal{L}(W)} = C(sI_{3N} - A_{cl})^{-1}B$$

$$= \left[I_N \otimes (\tau s^3 + s^2) + (\mathcal{L} + \mathcal{P}) \otimes (k_p + k_v s + k_a s^2)\right]^{-1}$$

□ It's very difficult to analysis the \mathcal{H}_{∞} norm of transfer function G(s) under general information flow topology.

1. Scaling Trend of ${\boldsymbol{\mathcal H}}_\infty$ norms under PF topology

Consider a homogeneous platoon under the PF topology with linear controllers given by

$$G(s) = \left[I_N \otimes (\tau s^3 + s^2) + (\mathcal{L} + \mathcal{P}) \otimes \left(k_p + k_v s + k_a s^2\right)\right]^{-1}$$

(2.1) the amplification factors AF_{f2l} and AF_{a2a} satisfy the following conditions

$$\beta_1 \alpha^{N-1} \le AF_{f2l} \le \beta_2 \alpha^{N-1} \qquad \beta_1 \alpha^{N-1} \le AF_{a2a} \le \frac{\beta_2(\alpha^N - 1)}{\alpha - 1}$$

where, β_1 , β_2 is constant real number, $\alpha > 1$.

Fig. Predecessor-following (PF) topology

Remarks

- □ The amplification factors will exponentially grow with increasing platoon size.
- These results are independent with controller gains, which means this is a fundamental drawback of PF topology when using identical linear controller

1. Scaling Trend of \mathcal{H}_{∞} norms under PF topology-simulation results

□ The amplification factors AF_{f2l} and AF_{a2a} indeed exponentially grow with increasing platoon size.

If the leader broadcast its information to all the following vehicle, resulting in predecessor-leader following topology, then amplification factor will become better

3. Scaling Trend of \mathcal{H}_{∞} norms under BD topology

Consider a homogeneous platoon under the BD topology with linear controllers given by

$$G(s) = \left[I_N \otimes (\tau s^3 + s^2) + (\mathcal{L} + \mathcal{P}) \otimes \left(k_p + k_v s + k_a s^2\right)\right]^{-1}$$

(4.1) the amplification factor AF_{a2a} at least increase with the platoon size as $O(N^2)$

