

Signalling Security

Episode 2: Securing legacy telecom network services

7 November 2022 15:00-17:00, CET

https://itu.int/go/WB-SSP-02 Assaf Klinger, SG11

Agenda

- Overview of legacy telecom services and their main use cases
- Current security issues in legacy telecom services
- Best-practice security mitigations for these attacks which do not require major infrastructure spend and their limitations
- Use cases for applying best practices for improving legacy telecom services security

A little about myself

- Husband, father (+2), geek 8-)
- Security researcher for the last 18 years
 - Specialize in telecom, IoT & blockchain Ο
 - Editor of ITU-T Study Group 11 recommendations Ο
 - Member of FIGI SIT WG & DFGI SA WG 0
- Handles:

Assaf.klinger@gmail.com

@AssafKlinger

https://www.linkedin.com/in/assaf-klinger-8a0b7159/

Telco's core network (very high level)

Today we're discussing legacy networks

Telecom services provided by legacy network

Legacy services main use-cases

• 2G/3G networks are very common in rural areas and are still in use for:

Service / UC	Banking	Communication	Authentication
SMS	\checkmark	\checkmark	\checkmark
USSD	\checkmark	×	×
Voice Call	×	\checkmark	\checkmark

- 2G/3G networks are still active because:
 - LTE / 5G have 20% of the range a GSM cell has
 - No data coverage is needed where feature-phones are dominant
 - Shutting down 2G/3G requires a total upgrade of the core network

Telcos won't invest in infrastructure if they don't have to

8

Legacy networks are far more vulnerable than modern networks

Network	Inte	ercept	Impers	onation	Tra	cking	0	oS	
Generation	Local	Remote	Local	Remote	Local	Remote	User	Network	
5G	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
4G	\bigcirc			\bigcirc					5G standards can potentially reduce
3G	\bigcirc								security risks in all dimensions
2G									

Major attacks on legacy network in the wild

2FA SMS interception via SS7 attack

Example

•	Log i	n to yo	ur Pay	/Pal account	×	+					
÷	\rightarrow	G	Â	paypal.com/	′il/si	¢	о-	☆	Incognit	to 👼	:
				P	Pa	ıyPo	al				
	En	nail or	mob	ile number							

Next	
or	
Sign Up	

Privacy Legal

Copyright © 1999-2019 PayPal. All rights reserved.

Consumer advisory - PayPal Pte. Ltd., the holder of PayPal's stored value facility, does not require the approval of the Monetary Authority of Singapore. Users are advised to read the terms and conditions carefully

3 assaf@DESKTOP-MCKINNK: /mnt/c/Work/Vaulto/Vaulto/tests

assaf@DESKTOP-MCKINNK:~\$ cd /mnt/c/Work/Vaulto/Vaulto/tests/

assaf@DESKTOP-MCKINNK:/mnt/c/Work/Vaulto/Vaulto/tests\$ clear

assaf@DESKTOP-MCKINNK:/mnt/c/Work/Vaulto/Vaulto/tests\$ python demo_ul_sms_intercept.py 972502138133 ne

Х

Attacking SIM cards via OTA messages ("binary SMS")

Example

SIM cards are fully programmable computer systems

Applications on modern SIM card

ISO/IEC 7816 Smart card (Universal Integrated Circuit Card - UICC)

SIM cards in legacy networks

Application	2G - SIM	3G - SIM+uSIM	4G - SIM+uSIM+iSIM			
Smart Card type	ICC	UICC	UICC / eUICC			
CPU	8bit	16bit	32bit			
Storage (E ² PROM)	Up to 32 Kbyte	Up to 128 KByte	Up to 256 Kbyte			
Interface	Electrical	Electrical	Electrical / NFC			
# of identities	1	2	multiple			
OTA authentication	DES	3DES	AES			
DES 8 2DES are broken authentication schemes!						
	DES & 3DES are broken authentication schemes!!					

A Java virus on the SIM card has access to lots of abusable functionality

DTA-deployed SIM virus can access SIM Toolkit API					
Standard STK function	Abuse potential				
Send SMS	Premium SMS fraud				
Dial phone numbers, send DTMF tones	 Circumvent caller-ID checks Mess with voice mail 				
Send USSD numbers	 Redirect incoming calls; sometimes also SMS Abuse USSD-based payment schemes 				
Query phone location and settings	Track victim				
Open URL in phone browser	 Phishing Malware deployment to phone Any other browser-based attack 				

Best-practice security mitigations

Mitigating SS7 attacks

• Implementation of configuration recommendations

Attack	FS.11 (2/3G)	FS.07 (2/3G)	IR.82 (2/3G)	IR.88 (4G)
Spoofing	\checkmark	\checkmark	\checkmark	×
SMS Hijack	×	\checkmark	×	×
Geo Location	×	\checkmark	\checkmark	\checkmark

- Commercial signaling firewalls
 - Stateless vs. stateful
 - Threat intelligence

Limitations of available mitigation measures

- Implementation of configuration recommendations
 - Doesn't solve attacks using legitimate signaling flows
 - Low adoption by operators
- Commercial signaling firewalls
 - Low adoption by operators
 - Threat intelligence depends on attack information sharing between operators

Mitigating SIM cards attacks (via OTA)

Mitigation layer for			🕒 Low 🛑 High
OTA hacking risk	Effectiveness	Cost	
Filter OTA messages from unapproved sources	Prevents probing in home network; leaves SIMs exposed when roaming, to fake base stations, and to phone malware	Functionality readily available in most SMSCs	Network operators short-term mitigation option
Deactivate OTA on card	Prevents attack (but also any future use of OTA w/ DES key)	Can be done through SMS	
Use 3DES or AES OTA keys	Prevents attack (expect for where downgrade attack works)	 Some cards need replacing, others updates 	Network
Use cards that do not disclose crypto texts	Prevents the attack	Some cards need to be replaced	term mitigation option
Filter suspicious messages on phone base band	Prevents the attack	New software function for future phones	Complimentary mitigation option for phone manufacturers

Mitigation Measures for non-operators

• Change the direction of 2FA

• Use a SIM Validation gateway

The solution to the problem is already here

- Adding an integrity layer to signaling transactions to enable trustable communications
- Some example of applications:
 - Calling Line Identification (CLI) authentication
 - **2FA**
 - Digital Financial Services (DFS)
 - And more...

Implement ITU-T SG11 recommendations

- ITU-T Q.3057 and ITU-T Q.3062
 - Adds digital signature to SS7 signaling to authenticate the sender
 - Prevents hackers from impersonating legitimate network functions on the SS7 network
 - Enables operators to manage trust of other operators
 - Using TLS 1.3 as a reference trust model
- ITU-T Q.3063
 - Uses Q.3057 and Q.3062 as infrastructure for CLI authentication
 - Uses authentication tokens to prevent CLI spoofing

But what about the trust model?

Trust model

- We will need to build a hierarchy of trust, country/regional first, then global. where each local regulator will have to determine how to implement the certification depending on their local forms of identification and rules
- Technically the digital certificates must be interoperable across domains (SIP, SS7 and others).
- This trust chain and certification standard must account for the fact that numbering is no longer geographical and different authorities can govern the same numbering range
- The trust anchor needs to be a globally trusted SDO, preferably one already in charge of numbering and this anchor must interoperate with existing repositories (such as the ones in the US and Canada)

vetting/certification process

- We will need to formulate a way to standardize these local/regional certification processes in order to keep the bad actors out. This standardization process should involve as many counties as possible in order to improve its applicability on the global scale
- The certification process implemented in the US and Canada for STIR/SHAKEN is a good use case to learn from in order to standardize it on the global scale
- These certification process standardization must be connected to a largely accepted digital identity management frameworks for the operator plane and for the individual plane

Example for applying best practices

- Legislation of laws enabling fraud information sharing between financial and telecom sectors and establishment of a regulatory round-table
- Implementation of recommendations for the prevention of telecom attacks across all national operators

- Registration of IMEI with the DFS provider when opening an account (simple MMI code)
- Mitigate SIM swap / SIM recycle by requesting IMEI information from the mobile operator via the USSD gateway and comparing to the registered IMEI
- When changing mobile phones, a new IMEI must be registered with the DFS provider using proof of identity (not over SMS)

Q&A

Assaf.klinger@gmail.com

2 @<u>AssafKlinger</u>

https://www.linkedin.com/in/assaf-klinger-8a0b7159/