Imperial College London

Applications of Diffusion Models in Telecommunications Nigel Meade

Introduction

- Recent examples of diffusion in telecomms
- Definition of diffusion model
- Survey of telecomms applications
 - Extrapolation
 - Use of explanatory variables
- Inter-market models
 - Multi national
 - Multi generation
 - Multi technology
- Strengths
- Weaknesses

Recent examples of diffusion in telecomms - 1

Recent examples of diffusion in telecomms – 1a

Recent examples of diffusion in telecomms - 2

Recent examples of diffusion in telecomms – 2a

Recent examples of diffusion in telecomms - 3

Financial Times 21/9/2004

Recent examples of diffusion in telecomms - 4

Definition of Diffusion models

A new technology diffuses into a population

Saturation level

Example – UK Colour TV

Forecasting Issues of Interest

- What will the rate of adoption be at a particular time?
- How many potential adopters are there in total?
- When will peak demand occur?
- How high is peak demand?

Problems in Forecasting

- Identify the appropriate model
- Estimate its parameters
- Predict future adoption
 - (with a prediction interval).
- Model identification is crucial
 - the literature reveals 29 possible models
 - there is no best single model

A selection of diffusion models

Model identification

- Meade & Islam (Management Science 1998)
- The best fitting model is not necessarily the best forecasting model
- They propose combining criteria based on:
 - Model fit (measured by R²
 - Model stability (looks at one step ahead forecasts)
- These criteria suggest a subset of models which are used to produce a combined forecast

Forecasting Cable Television Penetration in US

Applications in Telecomms

Variable	Author	Model
Fixed line telephone penetration	Chaddha & Chitgokepar (1971)	Logistic
	Hyett & McKenzie (1975)	Logistic
	Bewley & Fiebig (1988)	Flexible logistic
	Lee et al (1992)	Non-linear growth
	Meade & Islam (1995)	Comparison of 14 models
Business Telephones	Meade & Islam (1996)	Growth + econometric

Modelling approaches

Extrapolate from available data

Modelling approaches

Dynamic saturation level by relation to environmental variables

Multi – national models

 Pooling data series from several countries is used to overcome data shortage

See

- Gatignon et al (1989)
- Islam et al (2002)

Multi – generation models

Successive Generations of Technology Islam & Meade (1997)

Third Generation Adopters Second Generation Adopters First Generation Adopters

Time —

3 Generations of Austrian Mobiles

Multi – technology models

 Forecast international adoption of technology B using history of adoption of technology A (Meade & Islam, 2003)

Bivariate histogram of adoption times

Hazard rates for early and late adopting countries

Conclusions

Strengths

- Intrinsic saturation level
- Data based forecasts grounded on actuality
- Prediction intervals can be provided

Weaknesses

- Data based models prefer more data to less
- Forecasts made before point of inflexion have high uncertainty

The end

