Mind the gap Linking (telco) forecasting to innovation management

Drs. Patrick A. van der Duin Delft University of Technology, Faculty of Technology, Policy, and Management Geneva, October 25-26, 2004 p.vanderduin@tbm.tudelft.nl

1

Delft University of Technology

How to improve forecasting?

- 1. Better and more methods, data, tools, experts, etc.
- 2. Combining different methods
- 3. Better linkage to decisionmaking:
 - context
 - uncertainty in telco-industry

Contents

- 1. Forecasting & futures research
- 2. Telecom and the future
- 3. Managing innovation
- 4. Linking innovation & forecasting
 - Case: Lucio
- 5. Concluding remarks

1. Paradox of the future

"The more turbulent and dynamic our timeframe, the more need there is to know the future, but the more difficult it is to know the future"

1. Why look into the future?

Relation between need of looking into the future and the (im-) possibility of immediate organisational and strategic change

1. The playing field of futures research

fUDelft

1. Forecasting as part of futures research

1. Forecasting & scenarios

Playing field of futures research

1. Scenarios and forecasting

1. Problems with forecasting

Clusters of factors:	Factor and author:
Too much emphasis on technology push:	Fascination with the exotic: a bias toward the optimistic and a disregard for reality (Schnaars, 1989); Price-performance failures: many technologies deliver lesser benefits at greater costs than anticipated (idem); Too much influence of peope who have a financial stake in a new technology (Brody, 1991).
Influence of contemporary thinking or interests:	Enmeshed in the Zeitgeist: too much focused on one technology and its presumed benefits (Schnaars, 1989); Ultimate uses unforeseen: rarely do forecasters anticipate applications fully (idem) Market researchers who survey the wrong people, i.e. companies who produce a new technology (Brody, 1991). Expectations may be biased by the broader cultural concerns of the time (Geels & Smit, 2000).
Neglect of change:	 'Assumption drag': using 'old' assumptions in predictive models (Ascher, 1978). Ultimate uses unforeseen: rarely do forecasters anticipate applications fully (Schnaars, 1989). Sudden new trajectories in technological developments may trigger shifts in future images (Geels & Smit, 2000); Forecasts about new technology are often positioned as replacing old technology (idem); The neglect of of the generation of new activities by assuming that the pool of existing activities (idem).
Neglect of	Shifting social trends: changing demographic trends and social values are not well considered (Schnaars, 1989);
social change:	Too many stress on 'functional thinking' and neglecting the 'fun' of doing things, such
	as shopping (Geels & Smit, 2000); Viewing the societal embedding of new technologies as unproblematic (idem); New technology promise high societal gains but prove later too be unrealistic fittem).

1. Forecasting & market research

1. Futures research & market research

1. From process-experts to content-experts: a continuum

2. Gartner's hype cycle

2. Divergence and/or convergence

2. Telecom layers

2. Different time horizons telco-industry/company

2. Different uncertainties

Four notions of uncertainty theorized by Courtney, Kirkland and Viguelle 199

2. Pearson's uncertainty map

high ▲	Applications engineering:	Exploratory research:		
Uncertainty about <i>output</i> (ends)	Combining market opportunities with technical capabilities: new SMS-services	Development engineering: Telco standards		
low Iow Uncertainty about <i>process</i> (means)				

2. Forecasts and their consequences

Consequences:	Uncertain consequence:	Certain consequence:
Type of trend:		
Uncertain trend:	'unbundling'	'telco network crash'
Certain trend:	'millenium-problem'	'lower investments in telco networks'

2. Forecasting & decisionmaking

Quality of forecast Usage of forecast	Correct fore	ecast	Incorrect forecast
Forecast is used for decision	Correct dec	ision	Wrong! <i>Type II</i> error
Forecast is not Wrong! used for <i>Type I error</i> decision		Correct decision	

3. Futures research & innovation: Innovation takes time!!

3. Things are going fast.....

3....but not always that fast....

"If, over the past 30 years, the automotive and aircraft industries developed at the same rate as have chips that power PCs, a Rolls-Royce would cost \$ 2.75 and a Boeing 767 would cost \$ 500 and could circle the globe in 20 minutes on 5 gallons of gas."

3. Forecasting and innovation

Twiss, 1992:

Stage of the innovation	Technology forecasts			
process	Importance	Accuracy	Financial effect of error	
Idea generation	High	Medium	Low	
Technical feasability	High	Medium	Low	
Design & development	Low	High	Medium	
Preparation for production & marketing	Very low	High	High	
Post launch	-	-	-	

3. Forecasting and the *innovation-proces* (1st gen.):

3. Historical overview of generations of innovationmanagement (1):

- 1e generation: 1950 1970
 - technology (science) push; linear innovation-process; R&D institutes resemble organisational structure of universities; no link with strategy; market-aspects implemented too late; no professional projectmanagement
- 2e generation: 1960 1980
 - market pull, linear innovation-process, project-management, R&D is reactive, not enough attention for the long term ('incrementalism')

Based on: Rothwell (1994), Niosi (1999), Liyanage, Greenfield & Don (1999)

3. Historical overview of generations of innovationmanagement (2):

- 3e generation: 1970 1990
 - combination market pull & technology push; link with strategy; interaction within intra- and extra organisational netwerks; only focus on product & process innovation; only focus on creation instead on exploitation
- 4e generation: 1980 now
 -

3. Historical overview of development of innovationmanagement (3):

- Development characteristcis:
 - Evolutionary
 - Increasing complexity
 - Overcoming the disadvantages of previous generations
 - Adjustment to a changing environment (societal, economical strategic, organisational)
 - Principle of 4th generation are still under dispute
 - Generations are not wholly time-dependent but rather contextual. Example: government still uses the linear model (generation 1). The most competitive industries think and act in terms of the 4th generation.

3. Telecom developments and their impact on innovation management

- R&D alliances
- parallel, integral and cyclical innovation-processes, feedback loops
- more actors involved
- emphasis on shortening development time
- broad view on innovation
- 4th generation of innovation management >> Cyclic Innovation Model

3. Pipeline-model, supply driven

- One-directional causal processes
- Large distance between science and market
- Costly and lengthy process
- All processes take place within 1 organisation: 'closed innovation'

3. Pipeline-model, demand-driven

- One-directional causal processes
- Large distance between science and market
- Costly and lengthy process
- Science is too much 'following'

3. Solution: connecting the start and end

3. Dynamics around technology-development (changing possibilities)

- Science PUSH Technological research is driven by new scientific insights (LEFT)
- Business PULL Technological research is driven by new functional demands (RIGHT)

3. Dynamics around market transitions (changes desirabilities)

- Scientific insight
- Changing *demand* to product-services combinations is decided by the dynamics of societal needs (LEFT)
- Economic process
- Changing *supply* of product-service combinations is decided by the innovation capabilities of businesses (RIGHT)

3. Combination of cycles

3. The Cyclic Innovation Model (4th gen.):

• Decoupling (left-right) explains the European innovation-paradox

3. Decoupling technology and market

- Innovation is viewed too technically ('what is possible?')
- Societal aspects are often neglected ('what is desirable?')

4. 'Lucio': a mobile data service

a. the system

b. the screen

4. 'Lucio' and CIM combined

4. Forecasting problems with 'Lucio'

- Different companies, different industries, different cultures, different time-horizons
- Different speeds of development (networks, services)
- Different perspective of and attitude towards market
- Sharing forecasting activities (data, methods, etc.)
- No linear innovation process!

5. Some concluding remarks:

- Forecasting:
 - Is an input to decisionmaking, not an output in itself
 - Is part of a wider set of methods to look at the future
 - Improving forecasting does not automatically mean improving the forecast
 - Choice of method depends heavily on type of innovation management and type of innovation
 - Forecasts within a telco depend very much on each other (and of other companies!)
- Every company has a 'dream':
 - But: "On which vision of the future is that dream based?" >> FUTURE AUDIT : "Are your plans future proof?"
- Rehearsing the future:
 - "Test your plans in different possible futures just as a pilot practices within a flight simulator"

