Techno Economic Methodology for the Evaluation of Telecommunication Investment Projects.

Sensitivity and Risk Analysis Incorporation

Dimitris Katsianis

University of Athens Dept of Informatics & Telecommunications email:dkats@di.uoa.gr

International Telecommunication Union- Telecommunication Development Bureau

Market, Economics & Finance Unit

Expert Dialogues:

28-29 October 2004

Geneva, Switzerland

Iniversity of Athens Dept of Informatics & Telecommunications

28-29 Oct 2004 Geneva

Expert Dialogues –ITU-D s2

Consolidation of Results and Guidelines for deployment scenarios

28-29 Oct 2004 Geneva

Expert Dialogues –ITU-D s3

Steps in Network Evaluation

- Definition of service basket
- Network scenarios
- First Simulations Main Financial results
- Sensitivity and Risk Analysis
- Evaluation Recommendation and Guidelines

The TONIC Tool

- Based on Office 2000 platform
 Excel & Access
- Automatic sensitivity analysis
- Compatibility with Risk Analysis Tool(s)

-	:=ab 🧠 🖄 🔛 💈 🗅 🛛	i 🖓 🕞 🖪 🖤 👗 🖻 🛍 🖄	5 M + M + 🖗					
Ari	al 🔹 10 🔹 🖪	ⅠU 重重重團 ♀%,	:00 ;00 f≢ f≢					
A10 = ExpertMode								
	Α	В	С					
1	Name	Value	Example					
2	SizeArchitecture	3	4					
3	StartYear	2004	1998					
4	NumberOfYears	10	6					
5	CreationDate	Δευτέρα, 15 Οκτώβριος 2001	no change					
6	NameTdb	C:\Arkas\Tonic\tool\TONICTOOL_V1	no change					
7	TemplateVer	1.5	no change					
8	TeratoolVer	1.0	no change					
9	UseCustomFormulas	No	No					
10	ExpertMode	Yes	No					
4.4	r	Y	6					

The TONIC tool & its database

Component	Auto Update	Level	ltemType	M_Rate	M_Hours	WriteOff	ReferencePrice	Refere
GPRS_and_UMTS_DNS	1	FP1	Material/Electronics	80,0	0	5	15.000	1
GPRS_and_UMTS_Firewall	1	FP1	Material/Electronics	80,0	0	5	70.000	1
GPRS_Charging_gw	1	FP1	Material/Electronics	80,0	0	5	380.000	3
Middleware	1	FP1	Material/Electronics	0,05	0	5	15	
UMTS_Billing_system	1	FP1	Material/Electronics	0,05	0	5	6.000.000	1
UMTS_Call_Processing_Serv	1	FP1	Material/Electronics	0,05	0	5	2.000.000	
UMTS_HSS	1	FP1	Material/Electronics	0,05	0	5	2.000.000	3
UMTS_MediaGateway_circuit	1	FP1	Material/Electronics	0,05	0	5	600.000	
UMTS_MediaGateway_ip_mu	1	FP1	Material/Electronics	0,05	0	5	2.100.000	1
UMTS_MSC_Server	1	FP1	Material/Electronics	0,05	0	5	1.800.000	
UMTS_MSC_upgrade	1	FP1	Material/Electronics	0,05	0	10	200.000	2
UMTS_OMC	1	FP1	Material/Electronics	0,08	0	10	7.000.000	
Authentication Server	1	FP0	Material/Electronics	1	0	5	500.000	1
GPRS_and_UMTS_GGSN_S	1	FP0	Material/Electronics	80,0	Z	5	1.300.000	ĺ
UMTS_CAMEL_Server	1	FP0	Material/Electronics	80,0		10	3.600.000	2
UMTS_GMSC_Server	1	FPO	Material/Electronics	80,0	D		1.800.000	
UMTS_HLR/AuC	1	FP0	Material/Electronics	80,0	0			

Cost model

- P(0), the price in the reference year 0
- $n_r(0)$, the relative accumulated volume in year 0,
- ΔT , the time for the accumulated volume to grow from 10 % to 90 %,
- K , the learning curve coefficient.

$$P(t) = P(0) \cdot \left[n_r(0)^{-1} \cdot \left(1 + e^{\left\{ \ln \left[n_r(0)^{-1} - 1 \right] - \left[\frac{2 \cdot \ln 9}{\Delta T} \right] \cdot t \right\}} \right)^{-1} \right]^{\log_2 \cdot K}$$

Relative cost evolution as a function of Δ T with $n_r(0)=0.001$

The new Tool "Ecosys"

- Based on Office 2002 platform
 - Multiplayer environments
 - Real Options implementatio
 - New demand models

.

Main Financial Results

- Net Present Value, NPV
- Internal Rate of Return, IRR
- Payback Period
- Financial indicators
 - Investments
 - Running Costs
 - Revenues
 - Cash Flows
 - Depreciation
 - Profits
 - Taxes
 - Retained Cash Flows
 - Cash Balance
 - Rest Value

Scalability of the tool

- Sensitivity Analysis
- Risk Analysis

Sensitivity Analysis

- What if...?
- Approach
 - select the most critical input parameters
 - establish boundaries for their variation with a « 95% confidence interval »
- Results
 - impact on NPV
 - at boundary input parameter values: new NPV
 - sensitivity factor: how NPV varies (slope at base value)
 - impact on IRR
 - at boundary input parameter values: new IRR
 - sensitivity factor: slope at base value, although variation usually non linear

Risk Analysis

- Input:
 - Uncertainty in market parameters
 - Market size
 - Market share
 - Broadband services characteristics
 - Uncertainty in Cost parameters
 - Cost units
 - Cost evolution
 - Area characteristics
- Outputs
 - Probability measures for a reduced set of parameters

Risk Analysis

Risk Analysis - NPV

28-29 Oct 2004 Geneva

Expert Dialogues –ITU-D s18

Requirements for a T-E study

- Services Scenarios
 - Dimensioning
- Commercial Network Architectures .
 - For these services
 - Database
 - Serving areas
- T-E Model Constructions
 - Study period (years?)
- Potential market
- Market Shares (e.g operator)
- Pricing
- Runs- Results
- Sensitivity and Risk Analysis
- Evaluation of the results Recommendation and
 - **Guidelines Commercial viability**

Example case Location base Service LBS

University of Athens Dept of Informatics & Telecommunications

Blend of ... cases

Country Types:

Country Type	Large	Small	Description
Area size	370,000	132,000	Size of surface area of the country (km ²)
Area dense	185	7	Size of dense urban area (km ²).
Area urban	2,960	4,000	Size of urban area (km ²)
Area suburban	37,000	10,956	Size of suburban area (km ² .
Area rural	303,400	109,956	Size of rural area (km ²).
Population dense	50,000	10,000	Number of inhabitants in dense urban area per km ²
Population urban	4,000	1,216	Number of inhabitants in urban area per km ²
Population suburban	1,000	174	Number of inhabitants in suburban area per km ²
			Number of inhabitants in rural area per square km
Population rural	40	35	(during busy hour)
Total Population	65,000,000	11,000,000	Total population

Tariff and revenue forecasts

- Services
 - a) LBS services
 - b) M-Guide Service
- Study Period: 7 years

Parameters	Value
Nr of Queries per day (2004)	0.2
Start Price per Query (€)(2004)	1.00
End Price per Query (€) (2009)	0.50
Nr of main Services	
	7

Demand models

Main Financial Indexes

NPV - IRR - Payback Period

Cash Balances Large and Small Country

28-29 Oct 2004 Geneva

s27

Operational Expenditures (OPEX) SC

28-29 Oct 2004 Geneva

Expert Dialogues –ITU-D s28

Revenues LC

28-29 Oct 2004 Geneva

Expert Dialogues –ITU-D s29

Sensitivity Analysis

Risk Analysis

Risk Analysis - NPV

Risk Analysis – NPV (2)

Conclusions LBS Case

- Acceptable business opportunities
- LBS can still be an attractive opportunity for companies with or without telecom background
- Payback period of 5 to 6 years, with a yearly ARPU of over than 27€ for more enthusiastic testbeds
- Worst-case scenario
 - <u>*Risk analysis evaluation*</u> shows that almost 30% of the project cases could have significant profits and 70% of them remain positive
 - <u>The uncertainty level is high mainly</u> relating to the LBS penetration and market share
- <u>One-year delay</u> of this project could be reasonable in order to answer some critical questions

Time for Questions & Answers

d.katsianis@di.uoa.gr