Quantitative tools for Market Analysis By John Prince

Seminar on Economic and Market Analysis for Central and Eastern European countries (CEEC) and Baltic States

Czech Republic, Prague 9-11 September 2003

Fundamentals of Markets Diagram 1

Why Analytical Tools? **Analysis of Producers/Business** Behaviour. **Analysis of Consumers Behaviour.** Analysis of Environment. Why Need for Behavioral Analysis? **Premise:** Past behaviour influences present attitude and provides indicators of future behaviour.

Supply Side Functionality Diagram 2

Key Market Functionality

Determines/Assigns value to goods & services.

- Determines/assigns allocation of resources for production and distribution of goods & services;
- *****Determines social welfare.
- Analysis of value is critical to market analysis.

Investment

- ***Investment decision function of expected**return. I = fE(V)
- Investment, expected to mature in year n is normally made in year₁.
- So investment decision in year₁ is a function of E(Vⁿ) discounted to its value in year₁ (present value (PV))
- 1.0. $PV = p/(1+i) + p/(1+i)^2 \dots p/(1+i)^n$
- Where p = expected profit (return) and
- *i = discount rate and n time period usually
 in years.

Investment Decision (?)

1.1. $P_t = {}_t S_1^n \underline{R}_t - C_t$ $(1 + i)^{t}$ R = Total revenue**C**= Total cost **Total revenue and total cost expansion:** $\mathbf{R}_{t} = \mathbf{S}_{t} * \mathbf{P}_{t}$ $\mathbf{C}_{t} = \mathbf{U}_{t} * \mathbf{C}_{t}$

Revenue/Cost Permutations

1.2. $\mathbf{R} = \mathbf{M}_{r} = \mathbf{S}/\mathbf{P} = (\mathbf{S}_{2} - \mathbf{S}_{1})/\mathbf{S}_{1} = \mathbf{d} \mathbf{S}$ $(P_2 - P_1)/P_1 = dP$ **1.3.** ? C = Mc = ? U/? $\zeta = (U_2 - U_1)/U_1 = \underline{d U}$ $(C_{2} - C_{1})/C_{1} dC_{1}$ $\mathbf{A}_{r} = \mathbf{Marginal revenue}$ $\mathbf{A}_{c} = \mathbf{Marginal \ cost}$ *****d = Partial derivative

Variables

S = Quantity of goods/services sold
P = price, good/service
U = units of goods/services produced
Ç = unit cost of goods/services

Function Slope = dy/dxDiagram 4.

Profit Function

□ Let profit function (P) be expressed as: 1.4. P = - \$10 000 + \$400U - 2U²

- When output (U) is zero the firm incurs a loss of
 \$ 10,000
- ***** As output increases profit increases.
- Profit is maximised/minimised at the point:
- $4\mathbf{U} = 400$
- ***U** = 100.

***** Beyond 100 units profit begins to decline.

- To ascertain whether profit is maximised or minimised, take the second derivative:
- <u>d²P</u>
- d²U
- Point of maximization is where:
- d^2P is negative and minimization where
- d²U it is positive
- So where:
- $\underline{dP} = 400 4U = 400 4(100) = 0$
- dU
- $d^2P = -4$ confirms that at output 400 profit is
- d^2U maximised.

Quantitative Analysis of Discount Rate

Interest is the return on investment. Correlation between level of return and risk **Positive correlation Risk free investment** and low return. 1.5. ? = $f(\mu)$ Where: 2 = risk; and $\mathbf{*}\mu = \mathbf{uncertainty}.$

Estimating Uncertainty

- *No precise estimator.
- Probability: likelihood of occurrence of an event is normally used as an indicator of uncertainty.
- Assume there is a 70% chance that per minute tariff will fall with the introduction of a new mobile operator then:
- ***** Likelihood of price fall = 0.7
- ***** Likelihood of no price fall = 0.3
- ***** The sum of probabilities of an event should = 1

Application

Assume company is considering the options of investing \$1 million in either: (i) Expansion 2.5G network (ii) Introduction 3G network Assume that both projects are dependent on the level of domestic economic activity as given at table x.

Table x

State of Economy	Probability	Project 2.5 G	Project 3G
Recession	0.2	\$400	\$0
Normal	0.6	\$ 500	\$ 500
Boom	0.2	\$600	\$1,000

Expected Profit

*****Expected profit ($\hat{E}(?)$) is the weighted average of profits (?) in various states of the economy. **1.6.** $\hat{\mathbf{E}}(?) = {}_{\mathbf{i}} \mathbf{S}_{1}^{n} ? {}_{\mathbf{i}} \mathbf{P}_{\mathbf{i}}$ ***Where:** o P indicates probability and i = 1-n o E.g. the expected profit for the projects at **Table X are:** 1.7. $\hat{E}(?_a) = 400(0.2) + 500(0.6) + 600(0.2) = 500$ **1.8.** $\hat{E}(?_{\rm b}) = 500(0.6) + 1,000(0.2) = 500$

 \mathbf{i}

20

Observations

- Inverse relationship between probability of distribution and risk ;
- Risk is higher the further the dispersion from the expected value
- Risk is lower when variation of probable outcome is closer to the expected value
- Therefore dispersion around expected value determines degree of risk.
- *****Range for Project A = 400-600
- **Range for Project B = 0-1000**

Estimating Dispersion, (Standard Deviation)

- 1. Calculate expected value (mean of distribution): \hat{E} ? = S?; P;
- 2. Calculate deviation from Ê? :
- =?_i-Ê?
- **3.Calculate the variance of probability of distribution:**
- $s^{2} = S (?_{i} ?)^{2}P_{i}$
- **Standard Deviation** $s = (s^2)^{\frac{1}{2}}$

Deviation (? _i - Ê?)	Variance (? _i -?) ²	Variance * Probability (? _i - ?) ² P _i	Coefficient of Variation = s / Ê?
400 - 500 = - 100	10,000	10,000 * 0.2	= 2,000
500 - 500 = 0	0	0* 0.6	= 0
600 - 500 = 100	10,000	10,000* 0.2	= 2000
s ²	= 4,000	S	= 63.25

Adjusting Market Value for Risk

Rewriting Equation (1.0): 1.9. $PV = {}_{t}S^{n}{}_{1}p/(1+i)^{t}$, *****Risk adjustment:trade off investors are likely to make based on the degree of uncertainty. *****Risk premium is the difference between the required rate of return and risk free rate of return on an investment. *****Risk adjustment is effected through changes in the discount rate i

The Adjusted Present Value to account for risk (RVP) is : 2.0. RPV = _tS₁⁸ p/(1+ r)^t

Working Example: Project A : Roll out GSM network in region Y Project B : Roll out GSM network in region z Investment on both projects = \$100,000 ***** Expected annual return over 8 yrs = \$20,000 (Project A) & \$23,000 (Project B) *****s for Project A = 1.0 \Rightarrow s for Project B = 1.5 **Adjusted Costs of capital (r) are 10 % project A &** 15% Project B.

Risk Adjusted Value (RPV)

2.3. RPV _{Project B} =	<u>23,000</u> - 100,000
•	(1.15) ⁸
=	<u>23,000* 1</u> - 100,000
	(1.15) ⁸
=	23,000 x 4.487 -100,000
=	3,200

Other Risk Assessment Methodologies

 Coefficient of Variation = s / Ê?
 Beta method: measures risk for which investors require compensation.

Quantitative Analysis, Demand **Application of Quantitative methods to** study, simulate and forecast consumers response to change in factors that are likely to influence their purchase of a good/service. **A Demand Function may be expressed as:** $(Q_t) = f_t S_1^n(x_{1t}, x_{2t}, x_{3t}, \dots, x_{nt}).$ The fundamental problem is how to measure the relationship between Q_t & SX_{it}

Demand & Profit

2.4. $p_t = f(P_t - P_t) = f[P(Q_t + P_t) - P_t]$
Assuming:
$Q_t = f S? (P_t, Y_t, A_t, p_t, T_t \dots u)$
Where:
$\mathbf{P} = \mathbf{Price of } \mathbf{Q}$
Y= Disposable Income
A = Direct & indirect advertisement
p= price of related goods/services
T= taste
u= other factors.

Sensitivity

***** Problem:

To estimate the sensitivity of interrelationship between:

1. $(\mathbf{P}_{t}, \mathbf{Y}_{t}, \mathbf{A}_{t}, \mathbf{p}_{t}, \mathbf{T}_{t} \dots \mathbf{u}_{t})$ & \mathbf{Q}_{t}

2. (P_t, Y_t, A_t, p_t, T_tu_t) & revenue (R) and in turn
3. (P_t, Y_t, A_t, p_t, T_tu_t) & the level of profit (p).
* Sensitivity is normally involves measurement elasticity (?) the multiplier that prescribes the degree of responsiveness of one variable to a change in another variable, ceteris paribus.

Methods of Measurement of Elasticity

 $\Box ? = \underline{dQ} * \underline{X}$ Point elasticity • <u>dX</u> Q

- Or $\Box \acute{E} = \underline{dQ} * \underline{X!}$ Arc elasticity
- **dX** Q!
- ! indicates the mean

Measuring Demand Sensitivity

Assume that demand (annual) for a service (a) is expressed in terms of the linear function:

2.5.
$$Q_a = {}_{a1}P + {}_{a2}Y + {}_{a3}Pop + {}_{a4}Ic + {}_{a5}A$$

- $\mathbf{P} = \mathbf{Price} \text{ of } \mathbf{a}$
- *****Y= Income
- * Pop = Population
- ***** Ic = Index of credit availability
- ***** A = Advertising expenditure
- $a_{a1} a_{a5}$ are coefficients of the independent variables.

Assume that the respective coefficients were measured as: ***** 3000 for price ***1,000** for income *** 0.05 for population ***1, 500,000 for Index of credit availability *****0.05 for Advertisement. **Then:** 2.6. $Q_{a} = -3000P + 1,000Y + 0.05Pop +$ 1,5000,000Ic + 0.05A

Assuming that: • Y = 2,000 Pop= 200, 000,000 • Ic = 1.0• A = 100,000,000 **In terms of Price:** 2.7. $Q_{a} = -3000P + 1,000(2,000) +$ 0.05(200,000,000) + 1,5000,000(1)+0.05(100,000,000)= 18,500,000 - 3000P

Point Elasticity

 $(2.7. Q_a = -3000P + 1,000Y + 0.05Pop)$ + **1,5000,000Ic** + **0.05**A) Assume a proposed price increase from 3,000 to 3,500. 2.8. $dQ_a = -3,000$ a constant dP At: P = 3,000 and Q = 9,500,0002.9.? = -3000(3000/9,500,000)= -0.95.

At: P = 3,500 and Q = 8,000,0003.0. ? = -3,000(3,500/8,000,000)= - 1.3 **So elasticity can change along a demand Curve and could very between:** o Inelastic o **Unitary** o Elastic

Arc Elasticity

- $\acute{E} = -3,000(3,000 + 3,500)/2$ • (8,000,000 + 9,500,000)/2
- = 1.114
- GENERALLY, NOT MANY ENTERPRISES HAVE DATA TO CALCULATE POINT ELASTICITIES.

Real World Calculation of Decision Parameters

Regression Analysis:

Basically, a combination of mathematical and statistical methods to estimate values of parameters.

- **Widely used for:**
- o Simulation exercises;

• Forecasting/predicting socioeconomic/financial/market behaviour.

Identification/Specification of Issue

Statement of issue:

□E.g. Service provider applies for an increase in monthly residential telephone access rates in rural area X.

One of the factors the Regulator and operator should seek to establish for decision making is the sensitivity of households in area X to changes in telephone access rates.

Identification of Demand Function

Identification of critical factors that impact net *monthly residential telephone connections* (Q_t) Given the data at the following table it seems Reasonable to assume that (Q_t) is affected by: □ Monthly access rate for residential telephone, P_t; □ Monthly Disposable income per household, Y, in area X. 3.1. $Q_t = f(P_t, Y_t)$

Q	Р	Y
55	100	5.50
70	90	6.30
90	80	7.20
100	70	7.00
90	70	6.30
105	70	7.35
80	70	5.60
110	65	7.15
125	60	7.50
115	60	6.90
130	55	7.15
130	50	6.50

Specification of Regression Equation 3.1. $Q_i = \beta_1 - \beta_2 P_i + \beta_3 Y_i + u_i$ **U** is the stochastic term involving the following assumptions: o u; is normally distributed $o E(u_i) = 0$ $O E(u_i^2) = S^2$ $o \mathbf{E}(\mathbf{u}_{i}\mathbf{u}_{i}) = \mathbf{0}$ o The explanatory variables are nonstochastic \Box Note β_1 is the mean of Q when each of the explanatory variables is equal to zero.

Least Sq Estimates of Regression Coefficient 3.2. $S = {}_{i}S_{1}{}^{13}(Q_{i} - \beta_{1} - \beta_{2} P_{i} - \beta_{3}Y_{i})^{2}$ \Box Differentiating S with respect to β_1 , β_2 and β_3 : 3.3. $dS = -2_i S(Q_i - B_1 - B_2 P_i - B_3 Y_i)$ $\mathbf{d} \mathbf{B}_1$ 3.4. $\underline{dS} = -2_i S P_i (Q_i - \beta_1 - \beta_2 P_i - \beta_3 Y_i)$ d B₂ $3.5. \underline{dS} = -2_{i}S Y_{i}(Q_{i} - \beta_{1} - \beta_{2} P_{i} - \beta_{3} Y_{i})$ d B₂

Minimizing and rearranging terms: 3.6. S $Q_i = \beta n_1 + \beta_2 S P_i + \beta_3 S \overline{Y}_i$ 3.7. S $P_i Q_i = \beta_1 S P_i + \beta_2 S P_i^2 + \beta_3 S P_i Y_i$ **3.8.** $S Y_i Q_i = \beta_1 S Y_i + \beta_2 S P_i Y_i + \beta_3 S Y_i^2$ \Box So: 3.9. $\beta_1 = S Q_i/n - \beta_2 S P_i/n - \beta_3 S Y_i/n$ **USubstituting** β_1 **into the normal equations and** converting them into matrix form.

Note most regression package would do these iterations.

-3550*4.86-(-54)* 125.25	= 10,631.5 = -1.326
$2250*4.86 - (-54)^2$	8019

2250 * 125.5- (-54) * -(350)	= 90,112.5 = 11.237
8019	8019

4.0. $\beta_1 = 100 \cdot (-1.326) \cdot 70 - 11.237 \cdot 6.7 = 117.532$

• Other important calculations from the regression equation are:

$S Q_i/n =$	$\underline{d Q_i} * \underline{S P_i/n}$	= 1.326*
100	dP_i <u>S</u>	70/100 =
	Q _i /n	0.93
$S P_i/n = 70$	$?_{\rm Y} = 11.237*$	= 0.75
	6.7/100	
S $Y_i/n = 6.7$	$R^2 = 0.981$	F= 41.5

4.1. $Q_i = 117.532 - 1.326P_i + 11.237Y_i + u_i$

Statistical Tests

	Estimated	T values	Confidence	Test for
equation	t values	for 13-9	Interval	auto
		Degrees of	95% two	correlation
		Freedom	tail test	
<u>:B - B*</u>	$B_1 = 2.44$	2.262	Significant	Test for
S _ß				multi-
				collinearity
	$B_2 = 2.30$		Significant	
	$B_2 = 2.41$		Significant	

Annex 1 Basics for Optimization $1. Y = aX^b$ Techniques

 $dy/dx = baX^{b-1}$

2. Y = U*V

- dy/dx = V du/Dx + U dv/dx
- E.g. $Y = 3x^2(3-x)$

•
$$dy/dx = (3-x)(6x) + 3x^2(-1)$$

•
$$Y = U/V$$

• $\frac{dy/dx}{dy/dx} = \frac{V \frac{du/dx}{-} - U \frac{dv/dx}{V^2}}{V^2}$
• $Y = \frac{2x - 3}{6x^2}$
• $\frac{dy/dx}{dy/dx} = \frac{6x^2(2) - (2x - 3)12x}{36x^4}$
• $= 3-x$

• 3x³

- $Y = 2U U^2$
- Where $U = 2x^3$
- $dy/dx = dy/du^* du/dx =$
- $dy/du = 2 2(2x^3)$
- $du/dx = 6x^2$
- $= (2-4x^3)6x^2$
- $= 12x^2 24x^5$

- Second order derivatives:
- if $\frac{du}{dx} = 2cQ 3dQ^2$
- Then:
- $du^2/dx^2 = 2c 6dQ$

$$\checkmark$$
 Y = ae^{bx} then dy/dx = bae^{bx}

$$\checkmark$$
 Y = a log bx then dy/dx = a/x

✓ Y =
$$a^x$$
 then dy/dx = $a^x \log x$
✓ Y = $a \sin bX$ then dy/dx = $ab \cos bX$
✓ Y = $a \cos bX$ then dy/dx = $-ab \sin bX$