

NERTEL

Business made simple

Service Oriented Architecture for ICT

Marco Carugi ITU-T Q.2/13 Rapporteur Senior Advisor, Nortel Networks marco.carugi@nortel.com

- NGN open service environment
- SOA and Web Services for ICT
- A SOA application example

"Capabilities" as re-usable building blocks for services and applications in NGN

ANI (Application Network Interface)

- An NGN Open Service Environment for flexible and agile service creation, execution and management
 - Leveraging new capabilities enabled by 3G & Internet technologies
 - Exposing capabilities via standard application network interfaces
 - Portability and re-usability of capabilities across networks
 - Flexible development of applications and capabilities by Service and Network Providers, as well as Third Party Providers

Opening the NGN: an essential topic going forward

- How to open
 - Service Oriented Architecture (SOA) as framework?
 - Web Services as implementation tool set?
- What to open (expose)
 - Network capabilities <-> Applications ?
 - Network capabilities <-> Network capabilities ?
- Various related work items in ITU-T NGN GSI
 - Open Service Environment capabilities
 - Web Services deployment scenarios
 - OCAF model and components
- Relationship with other SDOs to be developed
 - Architectures and capabilities for open service environment
 - OASIS, OMA, Parlay etc.
- A very active market
 - Service Delivery Platforms, Middleware

What are Web Services?

- Web Services are simple XML-based messages for machine-machine messaging
 - Web Services don't necessarily involve web browsers
 - Web Services act as XML-based APIs
 - Use SOAP as a transport Protocol
- Web Services use standard internet technologies to interact dynamically with one another
 - Well understood security model
 - Loosely coupled
 - Can be combined to form complex services
 - Open standards connect disparate platforms
- Middleware based on Web Services has enjoyed tremendous success in the past five years
 - Examples: eBay/PayPal, Amazon and Google major users of Web Services

Web Services rapidly becoming an essential part of many IT services, in both B2B and B2C market categories

A Bigger Picture: Service Oriented Architectures

- SOA: Resources made available to other participants in a network via independent services, accessed in a standardized way
- SOA systems comprise loosely joined, highly interoperable application services
- Attractive to businesses because:
 - Cross-platform
 - Highly reusable
- Most SOA implementations identify web services as the means for realizing an SOA

The SOA concept of service

Orchestration of lower level services to provide a higher level service

IT ← → Telecom Interface Standards Requirements

- PREMISE: Emerging IT Applications ← →
 Telecom interface is the Web Services stack
- Standards:
- Open / expose the network intelligence and capabilities to the application layer through a unified interoperable set of interfaces to make it easy for IT to tap into the Telecom Services – driving demand for network assets which can provide intelligent service interfaces
- Ensure emerging Web Services standards can support Carrier Grade reliability and performance
- 3. Ensure that competing standards converge

- Ensure emerging Web Services standards can support Carrier Grade reliability and performance
- Key areas for Carrier Grade Web Services focus:
 - Identity Management (Identity Layer)
 - Parlay-X
 - WS-Convergence
 - Business Process
 - WS-Management
 - Federation and Security
- Standards Organizations need to adapt to this reality

SOA/Web Services: key SDOs

----- indicates links in progress or in perspective

SOA/WS fundamental bricks

Additional Capabilities	Management		Portals	
Business Process Orchestration	Composition/Orchestration			
Composable Service Elements	Security	Reliable Messaging		Transactionality
Messaging	Endpoint Identification, Publish/Subscribe			
Description	XML Schema, WSDL, UDDI, SOAP with Attachments			
Invocation	XML, SOAP			
Transports	HTTP, HTTPS,Others			

Source: WS-I

Parlay-X specifications

Part 1: Common

Part 2: Third Party Call

Part 3: Call Notification

Part 4: Short Messaging

Part 5: Multimedia Messaging

Part 6: Payment

Part 7: Account Management

Part 8: Terminal Status

Part 9: Terminal Location

Part 10: Call Handling

Part 11: Audio Call

Part 12: Multimedia Conference

Part 13: Address List Management

Part 14: Presence

Part 15: Message Broadcast

Part 16: Geocoding

Part 17: Application driven QoS

Part 18: Device Management

Part 19: Multi-Media Streaming Control

Part 20: Multi-Media Multicast Control

Parlay-X Architecture

An example of standardization work in relation with NGN Open Service Environment

Source: OMA OSE

A SOA Application Example

- Scale the Data Center Automation transforming the Data Center from a "glass house" to a virtualized Data Center spanning the whole globe
- Recent SOA/Web Services technology advances are applied to scale the dynamic control of networks and sensors
- These advances mainly concerning system-level support for stateful persistent resources and event-oriented asynchronous messaging

Bringing together three concepts

- System Virtualization
 - Isolation, consolidation, migration of resources
 - For this, resources are abstracted out of their physical instantiation
- Service Oriented Architecture (SOA)
 - Loose integration of functions
 - It overcomes separation
- Grids
 - Distribution and aggregation of functions
 - It makes productive use of separation
 - Builds upon SOA (and may use system virtualization)

With DRAC, we SOA-ize the network and give Applications the means to drive their own hi-touch network experience

Consider adapting the network to applications, not always the way around

Distributed network intelligence for real-time data delivery

Provide Sensor Services

> Manage Flows

Virtualize

- SOA for ICT enables new business revenues for the ICT ecosystem
- SOA for ICT brings new challenges to standards development – the intersection of IT and C in ICT
- A SOA framework for NGN open service environment
- Many SDOs, Forums, and Consortia → Alignment and Harmonization is essential

NERTEL

Business made simple