

# WiMAX: A Promising Technology for the Next Generation Wireless Communications Systems

June 22, 2007

**Makoto Yoshida** 

Senior Researcher
Wireless Systems Engineering Dept.
NGW Project
Fujitsu Laboratories Ltd.



### **Outline**

- 1. Network and Wireless: What is WiMAX's role?
- 2. Advanced technologies for WiMAX systems
- 3. Application systems for digital divide
- 4. Standardization activities: IEEE and ITU-R

### **Outline**



#### 1. Network and Wireless: What is WiMAX's role?

- 2. Advanced technologies for WilVIAX systems
- 3. Application systems for digital divide
- 4. Standardization activities: Ind IIU-R

### **Next Generation Packet-based Network**



**BTS:** Base station transceiver RNC: Radio Network Controller

xGSN: Serving/ Gateway GPRS Support Node

AGW: Access Gateway AED: Access edge Device LTE: Long Term Evolution





Keep channel resource during the call (Code, Bandwidth, etc.)

### **Packet Switching**



Share channel resource among users (Code, Bandwidth, etc.)

### Circuit Switch and Packet Switch

|         | Circuit switching                                                                                                                     | Packet switching                                                                                                                                           |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Feature | Keep channel resource during the call                                                                                                 | Share channel resource among users                                                                                                                         |  |  |
| Pros.   | <ul> <li>Constant bandwidth during the call</li> <li>There is no interruption by other users after call-setup</li> </ul>              | <ul> <li>Efficient use of channel resource</li> <li>Total capacity will be increased due to<br/>the statistical multiplexing</li> </ul>                    |  |  |
| Cons.   | <ul> <li>Keep channel resource even if there is no data to transmit</li> <li>Capacity is limited by the number of channels</li> </ul> | <ul> <li>Bandwidth may not be guaranteed</li> <li>Packet may be lost when channel congestion occurred</li> <li>Packet order will not guaranteed</li> </ul> |  |  |

### Wireless Technology Trend



### **Beyond 3G Packet-based Wireless Systems**

|                     | 3.5G 3G-LTE IMT-Adva                   |                                     | IMT-Advanced                               | WiMAX                                         |                                            |                                              |
|---------------------|----------------------------------------|-------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------|
|                     | (1x-EVDO Rev.A)                        | (HSDPA,HSUPA)                       | (3.9G)                                     | (4G)                                          | 802.16e                                    | 802.16m                                      |
| Access<br>method    | DL:CDMA<br>UL:CDMA                     | DL: CDMA<br>UL: CDMA                | DL: OFDMA<br>UL: SC-FDMA                   | DL: OFDMA(?)<br>UL: (?)                       | DL: SOFDMA<br>UL: SOFDMA                   | DL: SOFDMA<br>UL: SOFDMA                     |
| Bandwidth           | 1.25 MHz                               | 5 MHz                               | 20 MHz                                     | >100 MHz                                      | 20 MHz                                     | >20 MHz                                      |
| Modulation          | BPSK,QPSK<br>8PSK,16QAM                | HPSK,QPSK<br>16QAM                  | QPSK,16QAM<br>64QAM,etc.                   | QPSK,16QAM<br>64QAM,etc.                      | QPSK,16QAM<br>64QAM,etc.                   | QPSK,16QAM<br>64QAM,etc.                     |
| Data rate<br>(max.) | DL: 3.1Mbps<br>UL: 1.8Mbps             | DL: 14.4Mbps<br>UL: 5.7Mbps         | DL: 100Mbps<br>UL: 50Mbps                  | DL: ~1Gbps<br>UL: >50Mbps                     | DL+UL:<br>75Mbps                           | DL: >130Mbps<br>UL: >56Mbps                  |
| Service-in          | Year 2006                              | Year 2006                           | Expected in 2009                           | Expected in next decade                       | Expected in 2007                           | Expected in next decade                      |
| Features            | Enhancement<br>of data rate<br>and QoS | Enhancement of packetised data rate | Great improvement of data rate and latency | Further improvement of data rate and mobility | Great improvement of data rate and latency | Further improvement of data rate and latency |

**3G-LTE: 3G Long Term Evolution** 

# Wireless MAN History: WiMAX (Metropolitan Area Network)

Wireless MAN was initially developed as

FWA(Fixed Wireless Access) system

- first
  - Point to Point Access
  - LoS link
- enhanced to support
  - Point to Multipoint Access
  - NLoS link

LoS: Line of Sight NLoS: Non Line of Sight

All Rights Reserved, Copyright © Fujitsu Laboratories Ltd. 2007



### **802.16 Series Wireless MAN Specifications**

**Fixed** 

Nomadic/Portable

Simple Mobile/ Full Mobile

Relay / High speed

- Alternative to ADSL
- Business Access
- WiFi Backhaul

**Complements Cellular System** 



### **Main Features of IEEE802.16**

- ✓ Provide low-cost solution (networking, mobile performance)
- ✓ Fit to IP Communication
- ✓ Flexible depending on frequency assignment
- √ Various operational parameters are defined
- ✓ Only MAC/PHY layers are specified (i.e. Core network is out of scope in the 802.16)

### **Specification of WiMAX**

|                                  |               | Fixed (802.16-2004)       | Mobile (802.16e-2005) | 802.16m                       |  |
|----------------------------------|---------------|---------------------------|-----------------------|-------------------------------|--|
| Freq. Frequency band             |               | < 11GHz                   | < 6GHz < 6GHz         |                               |  |
|                                  | Bandwidth     | 1.25~20MHz                | 1.25~20MHz            | 1.25~20MHz                    |  |
| Peak Data Rate                   |               | 75Mbps<br>(DL+UL)         | 75Mbps<br>(DL+UL)     | > 130Mbps(DL)<br>> 56Mbps(UL) |  |
| Cell Radius                      |               | 2-10km (max. 50km)        | 2-3km                 | Up to 5km*                    |  |
| Modu-<br>lation                  | Primary (AMC) | BPSK/QPSK/16QAM/64<br>QAM | QPSK/16QAM/<br>64QAM  | QPSK/16QAM/<br>64QAM          |  |
|                                  | Secondary     | OFDMA                     | SOFDMA                | SOFDMA                        |  |
| Technology for higher data speed |               | AAS, STC, MIMO            | AAS, STC, MIMO        | AAS, STC, MIMO                |  |
| Mobility                         |               | Fix, Nomadic              | Max. 120km/h          | Max. 350km/h                  |  |

AMC: Adaptive Modulation and Coding, SC: Single Carrier, AAS: Adaptive Antenna System, STC: Space Time Coding

MIMO: Multiple Input Multiple Output

<sup>\*:</sup> some members propose "functionally up to 100km" for rural area application

### **OFDM and OFDMA**

## Transmission by OFDM (Orthogonal Frequency Division Multiplexing)

# Transmission by OFDMA (Orthogonal Frequency Division Multiple Access)



- All sub carriers are allocated to one user.
- Used in 802.16-2004

- Sub carriers are flexibly allocated to one or more users depending to their radio condition.
- Used in 802.16e-2005 and 802.16m

### **Outline**



- 1. Network and Wireless: What is Wilkl X's role?
- 2. Advanced technologies for WiMAX systems
- 3. Application systems for digital divide
- 4. Standardization activities: Ind IIU-R

### Scalable OFDMA (S-OFDMA)

#### OFDMA:802.16-2004

- FFT size is fixed to 2048 for all bandwidth
- Interval of the sub-carriers becomes narrower as available bandwidth.
- More difficult to keep performance

#### SOFDMA:802.16e-2005

- Allocate the FFT size according to available frequency bandwidth
- Interval of sub-carriers is fixed.





### **Multi-Antennas for Higher Capacity**

#### **≻AAA (Adaptive Array Antennas)**

- Space division to reduce interference at both terminal and base station
- Optimal antenna directivity is best calculated on real-time basis.



#### >MIMO (Multi Input Multi Output)

- Space Division Multiplexing in the same space using the same frequency band
- Expected capacity increase of number-of-antenna-fold
- Adaptive signal processing required to establish each independent channel



### MIMO: Multiple Input Multiple Output



#### MIMO Spatial Multiplexing

Multiple data streams are transmitted through multiple antennas

⇒ Data rate can be increased proportional to the number of antennas (min. of Tx and Rx)

### **MIMO Signal Processing Schemes**



#### Other schemes

- MMSE: Wiener Filter
- BLAST: Serial Interference Canceller
- MLD: Maximum Likelihood Detection
- Eigen-mode precoding: with feedback

### **Quadrature Amplitude Modulation**

Modulation Phase and Amplitude



2 bits per symbol Robust

4 bits per symbol Requires high S/N

### **Adaptive Modulation and Coding (AMC)**





Use high level modulation and coding rate when channel condition is good



Data Throughput can be increased

### **Adaptive Modulation and Coding (AMC)**

#### Throughput Performance



Single path Rayleigh Fading Fd = 5.555 Hz

### **Hybrid ARQ**

MS

Parity1

BTS

BTS

- <Conventional ARQ>
  - Discard error packet
  - Retry
- <Hybrid ARQ>
  - Chase Combining (CC)
    - Store
    - Resend
    - Combine

BTS Data Parity1 Data Parity1 Weighted and Combined Like MRC diversity

MS Data Parity1 Data

Error

NAK

Error

discarded

Parity1

- Incremental Redundancy (IR)
  - Store
  - Send

Additional redundant bits

ARQ: Automatic Repeat Request MRC: Maximum Ratio Combining

Parity1 Parity2

Decode as low rate coding

Data Parity1 Parity2 Data

Error

Send additional redundant bits

retry

OK?

Error?

Parity1

### **Critical Problems to Solve**

- Single Frequency Network (SFN) operation
  - Fractional Frequency Reuse (FFR)
  - Antenna diversity (STC)
  - Other-cell interference mitigation: Scheduling algorithm
- Peak-to-Average Power Ratio (PAPR) in Uplink (UL)
  - Linearization for terminal: high-linearity PA, Digital Pre-Distortion (DPD)
  - 3G-LTE employs Single-Carrier (SC) approach
- Control channel quality in Time Division Duplex (TDD): Data/C-ch mixed frame structure
  - Circular-Shifted Transmit Diversity (CSTD) for 2-Tx antennas
  - Repetition Coding

### Fractional Frequency Reuse (FFR)



FRF: Frequency Reuse Factor

### Circular-Shifted Transmit Diversity (CSTD)



#### ■Transmitter

-Transmit circular-shifted OFDM symbols by  $\Delta$ -circular operator at each antenna

$$\Delta_0 = 0$$

$$\Delta_1 < \Delta_2 < \dots < \Delta_{M-1}$$

→ Available delay path more than Cyclic Prefix (CP)

### Circular-Shifted Transmit Diversity (CSTD)



### **Outline**



- L Metwork and Wireless: What is Wilklax's role?
- 2. Advanced technologies for Willax systems
- 3. Application systems for digital divide
- 4. Standardization activities: Ind IIU-R

### Multi-hop Relay (802.16j)

- ■Add the repeater function:
  - -Wider coverage without backhaul line
  - -Higher throughput
- **■**Two Relay modes:
  - Transparent relay
    - •Two hop simple relay
    - Centralized scheduling
  - Non-transparent relay
    - •Multiple Relay
    - For expanding coverage
    - Centralized/Distributed scheduling







Passengers in a train



### Fixed Wireless Access (FWA)

- ■802.16e usage according to application:
  - -FWA for digital divide area
  - -MWA for dense urban area



MWA: Mobile Wireless Access

### **Coexistence FWA and MWA**

- ■MIC of Japan studied the possibility of coexistence FWA/MWA:
  - -Antenna directivity for FWA SS should be considered
  - -Site engineering between MWA/FWA should be considered



MIC: The Ministry of Internal Affairs and Communications

### **Outline**



- 1. Network and Wireless: What is William 2's role?
- 2. Advanced technologies for WilVIAX systems
- 3. Application systems for digital divide
- 4. Standardization activities: IEEE and ITU-R

### **IEEE802.16 Standard Family**



License Exempt Band

802.16h

Supporting Specification

802.16i

Mobile MIB

802.16k

Media Access Control Bridge

IMT-Advanced

:Active

All Rights Reserved, Copyright or dijitsu Laboratories Ltd. 2007

### **WiMAX Forum**

- Non profitable organization
- Established in 2001 to promote Broadband Wireless Access
- Objectives
  - Promotion of IEEE802.16 based products
  - Define system profiles
  - Create end to end network specification
  - Conduct interoperability test
  - Give the certificate logo allowance
- Members
  - Increase about 100 per year:
     about 100(June 2004), more than 420 now
  - Fujitsu is a board member from the beginning

### **WiMAX System Structure**



### **Mobile WiMAX System**

3GSM World Congress 2007/2/13 – 2/16, Barcelona, Spain



### 802.16j Time Line





2-month delay?

### 802.16m Time Line Plan



### ITU-R: IMT-2000

- IMT-2000
  - 3G mobile communications systems
  - Aimed at the global standard for up to 2Mbps (in stationary) in 2000
- IMT-2000 terrestrial family (2000/05) defined in ITU-R
   M.1457
  - 1. CDMA direct spread ... WCDMA
  - 2. CDMA multicarrier ....CDMA-2000
  - 3. CDMA TDD ... TD-SCDMA
  - 4. TDMA single carrier ... EDGE
  - 5. FDMA/TDMA ....DECT
- IMT-2000 frequency band
  - 806-960 MHz
  - 1710 1885 MHz
  - 1885 2025 MHz
  - 2110 2220 MHz
  - 2500 2690 MHz

### **IP-OFDM for IMT-2000**

- The 6<sup>th</sup> air interface for IMT-2000
  - IP-OFDMA ... 802.16e OFDMA
  - Submit M.1457 amendment to ITU-R WP8F at the Cameroon meeting in 2006/11
  - 9 Evaluation groups
     TIA(USA), TTA(Korea), CEG(Canada),
     ChEG(China), ATIS(USA), IEG(Israel),
     WCA(USA), ARIB-EG(Japan), Anatel(Brazil)
  - 22<sup>nd</sup> WP8F meeting (held in Kyoto) in 2007/05
    - → Failed to reach consensus concerning the decision on IP-OFDMA as the 6th member of IMT-2000 (Forward the decision to SG8)



THE POSSIBILITIES ARE INFINITE