

Cartographic data for macro-scale DVB-H planning

Predictable effects

- Rough coverage of the macro-sites

- Highlight the major coverage holes
- SFN networks : Configure the launch delays in order to avoid SFN/COFDM interference
- MFN networks: assign the frequencies in order to avoid both intra-network or internetwork (migration from analogue) interference

Applicable propagation model (section 2)

- Deterministic with appropriate planning margins
- Empirical with appropriate model tuning based upon a DVB measurement campaign in the Area Of Interest

ATDI

Cartographic data for micro-scale DVB-H planning

Predictable effects

- Detailed DVB coverage
- Canyon effect with constructive/destructive C-OFDM signals
- Diffusion effect for in the in-building penetration
- Multi-path effect
- Power delay spread

Applicable propagation model

- Deterministic
- Empirical with appropriate model tuning based upon a DVB measurement campaign in the Area Of Interest
- 3D ray tracing

Broadcast radio-planning

Cartographic environment for microscale design

ATDI

Assets

- Very good accuracy
- The building penetration can be evaluated according to its shape, height and type

Drawbacks

- Requires HR cartographic data
- Dedicated to smaller AOI (CBD for instance)
- Slower and more expensive

