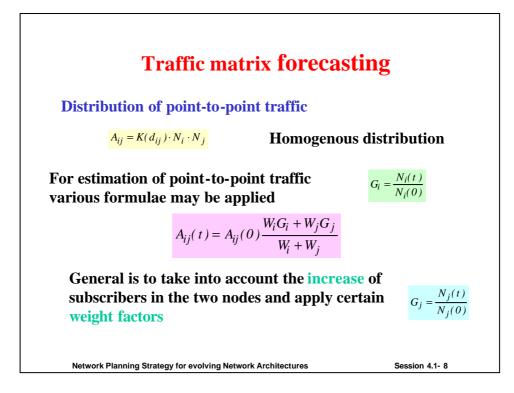


Traffic matrix forecasting

Estimation of total traffic


If it is not possible to separate the subscribers into categories with different traffic, the future traffic may simply be estimated as:

$$A(t) = A(0) \frac{N(t)}{N(0)}$$

Where, N(t) and N(0) are the number of subscribers at times t and zero

Session 4.1-7

Network Planning Strategy for evolving Network Architectures

Traffic matrix forecasting

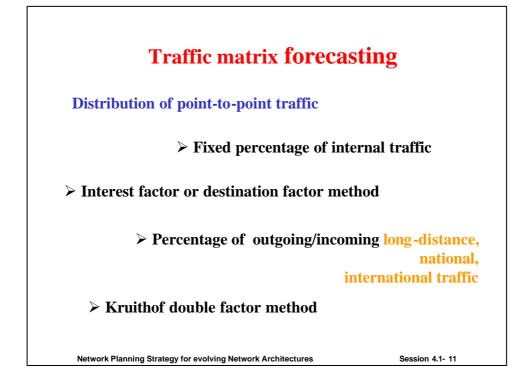
Distribution of point-to-point traffic

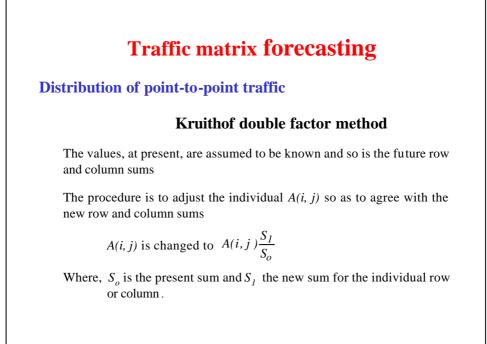
$$A_{ij}(t) = A_{ij}(0) \frac{W_i G_i + W_j G_j}{W_i + W_j}$$

Where, W_i and W_j are the weights and G_i is the growth of subscribers in node *i*, and G_j in node *j*

$$G_i = \frac{N_i(t)}{N_i(0)} \qquad \qquad G_j = \frac{N_j(t)}{N_j(0)}$$

Different methods exist for W_i and W_j calculation

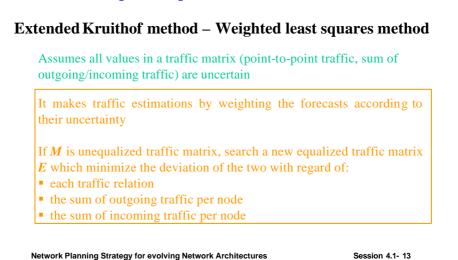

Network Planning Strategy for evolving Network Architectures

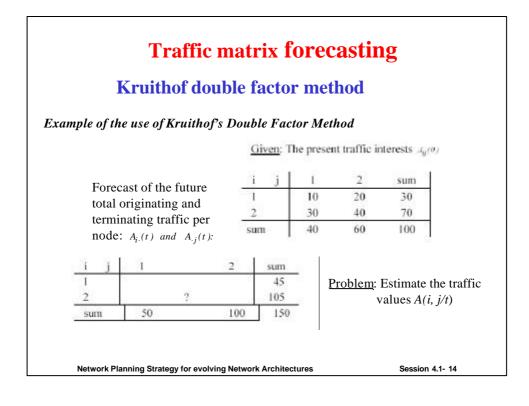

<section-header><text><section-header><section-header><equation-block><text><text><text>

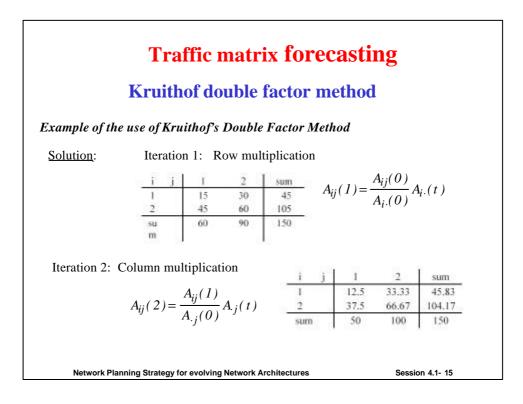
Network Planning Strategy for evolving Network Architectures

Session 4.1- 10

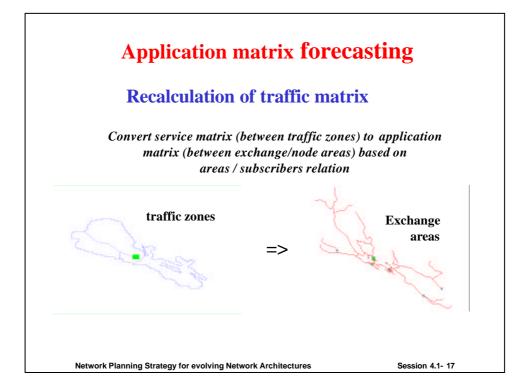
Session 4.1-9




Network Planning Strategy for evolving Network Architectures


Session 4.1- 12

Traffic matrix forecasting


Distribution of point-to-point traffic

	Kruitho	of dou	ble fa	acto	r n	netho	d	
nple of the	e use of Kruit	hof's D	ouble F	actor	Me	ethod		
eration 3:	Row multipli	cation						
	i j	1	2	sum	E			
	1	12.27	32.73	45				
	2	2 37.80 6		105	i			
	sum	50.07	99.93	150				
eration 4:	Column multi	plicatio	n	i	j	1	2	sum
				1		12.25	32.75	45
	After 4 iterations, the sums of rows			2		37.75	67.25	105
After 4 itera	tions, the sun		and columns are equal to the				100	150
		the		sum		50	100	100

			Application matrix forecasting										
				-							-		
Tr	affic	ma	tri	x be	twe	en d	exc	han	ges	/no	des		
									8				
MM	A	B	C	D	E	F	6	н	1	1	K	-	
A	437.78	65.04	45.53	560.37	87.75	85.63	51.49	64.20	85.04	625.71	590.75	1	
5	55.04	8.67	6.07	86.72	9.03	11.42	6.45	7.23	8.67	70.10	78.77		
ć	95.55	6.07	4.25	60.70	6.12	7.99	4.01	5.06	6.07	49.07	55.14		
0	650.17	86.72	60.70	867.16	90.53	114.18	68.65	72.26	86.72	703.95	787.67		
E	67.75	9.03	6.32	90.33	9.41	11.09	7.15	7.53	9.03	73.02	82.05		
F	85.63	11.42	7.69	114.10	11.69	15.00	9.04	9.61	11.42	92.29	103.71		
6	\$1.49	6.96	4.81	68.65	7.15	9.04	5.43	5.72	6.85	\$5.49	62.36		
8	54.20	7.23	\$.05	72.25	7.53	9.51	5.72	6.02	7.23	53.41	05.04		
E	55.04	78.5	6.07	86.72	9.03	11,42	6.35	7.23	8.67	70.10	78.77		
1	525.71	70.10	49.07	700.95	73.62	91.29	55.49	53.41	70.10	566.60	636.7D	1	
8	690.75	78.77	95.14	787.67	82.05	103.71	82.38	65.64	76.77	636.70	716,48	4	
6	189.69	26.29	17.70	261.92	26.35	33.30	20.62	21.08	26.29	204.44	228.74		
4	05.04	0.07	6.07	00.72	9.05	11,42	0.05	7,25	6.07	70.10	70.77		
1	785.85	104.75	73.35		109.15	137.96	82.95	87.32	104.75	845.98	951.75	- 2	
0	49.78	6.50	4.55	65.04	6.77	8.58	5.15	5.42	6,50	32.57	59.08	1	
P	89.37	9.25	6,47	92,50	9.64	12.16	7.32	7.71	9.25	74.77	84.02		
0	81.24	8.17	5.72	81.66	8.61	10.75	6.48	6.60	8.17	63.01	74.17		
R	405.45	54.20	37.84	541.97	50.45	71.36	42.81	45.16	54.20	433.08	492.29	1	
s +	54.20	7.23	5.05	72.25	7.13	8.5/1	5.72	6.02	7.23	55.41	55.54		
4					- 100 March							2	