

Session 5.8

Supporting Network Planning Tools II

Roland Götz LS telcom AG / Spectrocan

Data Management

What is the Minimum Set of Data you need to perform a Basic Coverage Prediction?

- Coordinates of the Transmitter
- Radiated Power
- Frequency
- Antenna Pattern

What other kind of Data have to be managed and Why?

Data describing the Transmitter

- Antenna
- all technical parameters (power range, frequency range, sensitivity...)

Data describing the Network

- Sites
- Cells, Sectors, links
- neighbouring relations
- frequency plans, frequency rasters
- Data describing Interfering Networks
 - same service other operators
 - other services
 - in other countries

Data Management

Data Management

What other kind of Data have to be managed and Why?

- for Tool Administration
 - User / Role
 - Password
 - System Layout

Result Data Base

- Coverage Maps
- Interference Relations
- Network Analysis
- which have been performed in the past

Libaries

- Antenna Equipment
- Transmitter

Equipment

Receiver Equipment

• • • •

6

Detailed Data Information

 are necessary to perform comprehensive network analysis / optimisations

An comprehensive Data Management

- allows keeping all network data in one central data base
- makes daily work easier (Libraries)

LS telcom Spectrocan Modern Radio Network Planning Tools

Spreadsheets offer a view on database tables.

Graphical User Interface

All records of the related database table (e.g all sectors) can be edited:

Network	WorkDB:Secto	r					
	BTS Name	Azimuth	Antenna Height	Downtil	EIRP dBm	Antenna Name	Sitenaπ ▲
1	Site1_1	0.0	35.0	0.0	50.0	Omni	Demo Siti
2	Site2_1	0.0	35.0	0.0	50.0	Antenna 65°	Demo Siti
3	Sile2_2	120.0	35.8	U.U	50.0		Leme Lik
4	Site2_3	248.8	35.0	0.0	50.0	Antenna 65°	Demo Site
5	Site3_1	25.0	15.0	5.0	50.0	Antenna 90°	Site1
6	Site3_2	145.4	15.0	0.0	50.0	Antenna 90°	Site1
7	Site3_3	265.4	15.0	0.0	50.0	Antenna 90°	Site1
8	Site4_1	AT.A	25.0	0.0	50.0	Antenna 90°	Demo Siti 🔻
] /		•			►

Each row contains information for one object e.g Antenna type, antenna height, azimuth etc. for a specific sector

Each column stands for one specific database field e.g Antenna Height

The following options are available to work with spreadsheets

- Edit functions
- Query Functions
- Functions to change the layout of the spreadsheet
- Functions for graphical display of the spreadsheet data
- Import / Export Functions

Editors

Graphical User Interface

Editor views allow to edit all data related to a specific object

[Mutual Inter	f Madala									
Mutuar miter	n. Mouers									
Power	CAE Data	Rast. Resul	ts ARFO		Special Fre	q. Neighb.	Cells			
Description N	lanager 1	Fopology 🎽	Calc. Resul	ts∬Tra	nsceiver	Antenna				
Site Name Sector Name	Demo Site1 Site1_1		Project St Project Network	atus I I	Phase 1 Hu Hubei Train China	ıbei Training ning System				
CI 1			LAC	-1						
Cell Type:			Partition	Norma	al Cell	•				
Coverage	Single Cell	•	Range	Norma						
Dimension	Macrocell	•	Radius	0.000	km					
Cell Class	URBAN		-	External Cell						
System Tech	nnology			🗆 Bor	der Cell					
GSM 900 GSM 900				🗖 Rep	eater					
							┢			
ok Apply	X +-+ Cancel Reset	Default Neu		? Help	First F	Prev. Next	Last			

Working Window

Graphical User Interface

Live Planning Tool Demonstration

"MULTIIink" Design Tool for Engineering Microwave Links and PMP / WLL / LMDS Planning

Supporting Network Planning Tools

rgoetz@LStelcom.com www.LStelcom.com

Diffraction

Diffraction:

Propagation Prediction

- a signal could be received even if there is no line of sight
- diffraction means also an attenuation of the wave.
- higher frequency -> higher diffraction attenuation.

replace obstacles by Knife-edges

Scattering

Propagation Prediction

from point	from rough surface	from volume
Ę	Fi	E _i E _s
s s	Es C	
analytical model for sphere	modified reflection	radiative transfer theory

numerical techniques

coefficient

statistical models

Wave Propagation Models VHF/UHF

Modern Radio Network Planning Tools offer a wide range of Propagation Models

Propagation Prediction

Information models Sight Check Sight Check (Fresnel)

Physical models

Free space Epstein-Peterson

Empirical models

Okumura-Hata

Mixed models

Longley-Rice ITU-R P.370 ITU-R P.1546 GEG L&S VHF/UHF

 $\ensuremath{\textcircled{}^{\odot}}$ 2003 by LS telcom AG

Supporting Network Planning Tools

rgoetz@LStelcom.com 22 www.LStelcom.com

Models and Frequency Ranges

- Determines the field strength value purely on the basis of the loss due to the distance d from the transmitter
- Selected calculation mode affects the k-factor for the calculation (see sight check)
- Additionally the consideration of morphological classes is possible if available; the clutter heights of the urban and rural morphologic classes are added to the topological heights

Propagation Prediction

- latest version 1995
- coordination model \Rightarrow tends to overestimate fieldstrength
- basis:

measured data from North America, Europe, North Sea (cold) and Mediterranean Sea (warm)

condensed to a set of curves: fieldstrength E over a homogenous terrain as a function of distance d (10 km ... 1 000 km) for ...

- frequency ranges VHF (30 ... 250 MHz) and UHF (450 ... 1 000 MHz)
- power of 1kW ERP
- effective transmitter antenna height 37.5 m ... 1 200 m (3 km \leq d \leq 15 km)
- **terrain roughness** $\Delta h = 50 \text{ m} (10 \text{ km} \le d \le 50 \text{ km})$
- receiver location over land, cold sea or warm sea
- receiver antenna height h_R = 10 m
- 50 % location probability
- 1%, 5%, 10% and 50% time probability

Used for highest compatibility with international planning procedures

ITU-R 370 – Propagation Curves

© 2003 by LS telcom AG

rgoetz@LStelcom.com 28 www.LStelcom.com

LS telcom

Propagation Prediction

Major changes between ITU-R 370 and ITU-R 1546

- Interpolation and extension in frequency (between 3 curves from 30 MHz ... 3 000 MHz)
- Extension to distances below 10 km from transmitter (1 km)
- Terrain roughness is no longer a parameter
- More complex calculation near the transmitter
- calculation procedure for negative h_{eff}, curves extended to 10 m
- Interpolation for time variability (between curves)
- Location's standard deviation as a function of frequency
- More complex land sea path calculation

Propagation Prediction

- empirical model for propagation along flat and homogenous urban terrain
- based on measurements for vertical polarization by Okumura and ...
- interpolated formulas by Hata

Extensions to Okumura-Hata

- calculation of effective transmitter antenna height $h_T \rightarrow h_{T,eff}$ (different options)
- additional diffraction term for paths without sight
- consideration of morphological heights in diffraction term
- subdivision of the 4 morphological classes of Okumura-Hata into 16 classes (morphological gain with respect to urban areas)
- correction for non flat earth (terrain slope)

Micro Cell Model

Comparison of drive test and predictions done for the city area of Munich

Prediction Models

Propagation Prediction

Non-Terrain Based

- Use of "effective antenna height"
- Monotonous decline of field strength with increasing distance to transmitter

Example: ITU-R P. 370

DTM Based

- Diffraction, shading, reflection
- Terrain elevation and land use (morphology)
- 2D and 3D models

Examples: "Epstein-Peterson", "Longley&Rice", "Okumura-Hata"

Live Planning Tool Demonstration

"CHIRplus_BC" Planning and Coordination of Broadcast Services (FM, TV, DAB, DVB)

Spectrocan Modern Radio Network Planning Tool Radio Network Planning Tool Interference Analysis Data / Result Output Interference Analysis

Interference by one Transmitter

Spectrocan

Interference by several Transmitter

In modern Planning Tools, the cumulation of the single interfering fields can be done in several different ways.

The various procedures differ in the way how simplifications are used to minimize the calculation effort.

In the following a short overview is given for the procedures which are most often used in interference calculations.

Interference Analysis

Non-statistical methods:

- Maximum procedure
- Power-sum method

Statistical methods:

- Integration method
- Log-normal method
- Multiplication method
- Simplified multiplication method
- Simplified Log-normal method
- Trilinear Log-normal method

Most use is made of the power-sum method and the simplified multiplication method

Reference CCIR Report 945-2: Methods for the Assessment of Multiple Interference

Frequency Scan

Interference Analysis

This function is used to find out gaps in the frequency spectrum where new TV or FM transmitters could be planned. At a desired transmitter site (transmitter coordinate) a wanted transmitter calculation based on a frequency range given by the user is done and the usable field strength calculated for each frequency point.

<mark>/2</mark> F_1	X De087.5_00	2.txt					- I ×	Frequen	cy Scan, FM Bi	oadcas	t									_1
38.6	7 Useable	Fieldst -	Analysi	s Method:	Simplified Multiplic	ation	<u> </u>													
No	Frequency	Channel	UFS	A/sqkm	Max.Interferer				175 -		F	requ	.ency	Scar	ı, FI	4 Br	oado	ast		1
1 2	87.50000 87.60000	-2 2	38.7 40.7	0.00	SW Slopes/E Riverina SW Slopes/E Riverina	88.30 88.30	AUS AUS				UFS	-								
3	87.70000 87.80000	+2 -3	42.7 43.7	0.00	SW Slopes/E Riverina SW Slopes/E Riverina	88.30 88.30	AUS		150 -											
5 6 7	87.90000 88.00000 88.10000	3 +3 -4	45.5 60.4 73.6	0.00 0.00 0.00	SW SIOPES/E Riverina SW Slopes/E Riverina SW Slopes/E Riverina	88.30 88.30 88.30	AUS AUS		125 -											
8	88.20000 88.30000	4 +4	87.7 99.7	0.00	SW Slopes/E Riverina SW Slopes/E Riverina	88.30 88.30	AUS AUS	d												
10 11 12	88.40000 88.50000 88.60000	-5 5 +5	87.7 70.0 65.0	0.00	SW Slopes/E Riverina SW Slopes/E Riverina SW Slopes/E Diverina	88.30 88.30 88.30	AUS AUS	Bu	100 -	_				<u></u> ∦∦∦						-
13 14	88.70000 88.80000	-6 6	74.4 66.8	0.00	Walwa/Jingellic SW Slopes/E Riverina	88.70 89.10	AUS	v	75								l L u i	L bi	Uni	
15 16	88.90000 89.00000	+6 -7	75.3 87.7	0.00	SW Slopes/E Riverina SW Slopes/E Riverina	89.10 89.10	AUS	/ m	,,, ,			'' I I	ard .	11 11 1	14	ч Ir .	11	1.1.1	lind.	
17 18 19	89.10000 89.20000 89.30000	+7 -8	99.7 87.7 70.3	0.00	SW Slopes/E Riverina SW Slopes/E Riverina SW Slopes/E Riverina	89.10 89.10 89.10	AUS AUS		50 -	_									-	-
20 21	89.40000 89.50000	8 +8	61.8 68.9	0.00 0.00	SW Slopes/E Riverina Orange	89.10 89.50	AUS AUS													
22 23 24	89.60000 89.70000 89.80000	-9 9 +9	64.5 74.9 87 7	0.00	SW Slopes/E Riverina SW Slopes/E Riverina SW Slopes/E Rivering	89.90 89.90 89.90	AUS AUS AUS		25 -											1
25 26	89.90000 90.00000	-10 10	99.7 87.7	0.00	SW Slopes/E Riverina SW Slopes/E Riverina SW Slopes/E Riverina	89.90 89.90	AUS		0 -											-
27 28	90.10000 90.20000	+10	70.2 63.0	0.00	SW Slopes/E Riverina SW Slopes/E Riverina	89.90 89.90	AUS AUS		8	6 88	, 90	92	94	96 9	98 1	00 1(02 10	04 10	6 108 1	10
29 30 31	90.30000 90.40000 90.50000	+11 +11 -12	71.1 66.1 76.3	0.00 0.00 0.00	Bendigo SW Slopes/E Riverina SW Slopes/E Riverina	90.30 90.70 90.70	AUS AUS AUS							f /	MHz					