Technology Seminar

MPEG Video Technology

Kit Barritt

Principal Lecturer Sony Training Centre

Content

- Standards
- Frame Structure
- Frame Types
- Frame Sequences
- Difference Frames
- Motion Prediction

Content

- MPEG Encoding
 - Inter-frame Process
 - I/P/B Frames
 - Motion Prediction
 - Intra-frame Process
 - DCT
 - Zig Zag Scan & Run length encoding
 - Entropy coding
 - Quantisation

MPEG

- Edit techniques
- Multi-generation considerations
- Compression System Comparisons
 - MPEG-2 422P@ML
 - DVC
- MPEG System Layer
 - MPEG Transmission
 - Programme Stream
 - Transport Stream
 - PID, PAT & PMT
 - Time Clocks

Content

- MPEG-4
 - history
 - Audio coding
 - Video coding

The MPEG Standards Set

MPEG-21 MPEG-7 **MPEG** MPEG-2 MPEG-4 MPEG-1 MPEG-3

Levels and Profiles

- MPEG-2 Profile @ Level
- Profiles
 - Simple, Main, SNR, Spatial, High, 422 Profile
- Levels
 - High, High-1440, Main, Low

Levels and Profiles

	Profile	Simple	Main	SNR	Spatial	High	422
	Frame Types	I&P	I, P & B	I, P & B	I, P & B	I, P & B	I, P & B
Level	Chroma Sampling	4:2:0	4:2:0	4:2:0	4:2:0	4:2:0 or 4:2:2	4:2:0 or 4:2:2
High	Samples/line Lines/frame Frames/sec Max Bit-rate (MBps)		1920 1152 60 80			1920 1152 60 100	1920 1088 60 300
High 1440	Samples/line Lines/frame Frames/sec Max Bit-rate (MBps)		1440 1152 60 60		1440 1152 60 60	1440 1152 60 80	
Main	Samples/line Lines/frame Frames/sec Max Bit-rate (MBps)	720 576 30 15	720 576 30 15	720 576 30 15		720 576 30 20	720 608 30 50
Low	Samples/line Lines/frame Frames/sec Max Bit-rate (MBps)		352 288 30 4	352 288 30 4			

MPEG-2 Sample Structure

4:2:2

- Represent Luminance Samples
- X Represent Chrominance Samples

MPEG-2 Sample Structure

Represent Luminance Samples

Represent Chrominance Samples

Skip

4:2:0

MPEG Block Structure

8 x 8 Pixel Block Y, Cr or Cb

Y Block	Y Block		Cb Block		Cr Block
Y Block	Y Block	+	Cb Block	+	Cr Block

422P @ ML Macro Block consisting of Y, Cr & Cb Blocks

MPEG Frame Structure

An MPEG 422P @ ML Frame of 45 x 38 Macro Blocks

Inter-field and BRR Process

Prediction Frame

Source Frame A

Source Frame B

Frame A is encoded as a I Frame Frame B is encoded as a P Frame

Prediction Frame

Frame Types

- I Frame
 - Intra frame compression
- P Frame
 - Forward Prediction frame
 - Typically 30% Size of I frame
- B Frame
 - Bi-directional Prediction
 - May refer to I or P frames before or after the coding frame
 - Typically 50% the size of P frame (I.e 15% size of I frame)

MPEG Frame Sequence

12 Frame GOP

4 Frame GOP

2 Frame GOP

MPEG P Frame Generation

Difference Frame

Frame N

Frame N+1

(Frame N) - (Frame N+1)

Difference Frame

Frame N

Frame N+1

(Frame N) - (Frame N+1)

Difference Frame

Frame N

Frame N+1

(Frame N) - (Frame N+1)

R Frame Generation

Note: MPEG does not support R Frames, they are a type of B Frame

B Frame Generation

Note: B frames can refer to I frames or P frames Motion Prediction can refer to earlier or later frames

Frame N+1

Difference Frame
Without Motion Prediction

Difference Frame
With Motion Prediction

MPEG Coder

General Structure

Typical Picture

Most 8x8 Pixel areas are evenly shaded

MPEG Intra -frame Coder

DCT Process

Time and Frequency Domain

DCT Spacial Frequency Patterns

Typical DCT Transform

87	92	90	89	91	47	95
81	77	96	71	44	58	49
43	65	40	64	99	61	55
21	45	51	59	80	48	63
94	56	62	41	74	75	57
82	68	79	54	46	52	60
42	70	84	69	50	97	67
53	85	88	73	66	78	86
	81 43 21 94 82 42	81 77 43 65 21 45 94 56 82 68 42 70	81 77 96 43 65 40 21 45 51 94 56 62 82 68 79 42 70 84	81 77 96 71 43 65 40 64 21 45 51 59 94 56 62 41 82 68 79 54 42 70 84 69	81 77 96 71 44 43 65 40 64 99 21 45 51 59 80 94 56 62 41 74 82 68 79 54 46 42 70 84 69 50	81 77 96 71 44 58 43 65 40 64 99 61 21 45 51 59 80 48 94 56 62 41 74 75 82 68 79 54 46 52 42 70 84 69 50 97

284	18	-12	2	3	-7	0	0
10	9	8	1	-4	1	0	0
-6	2	1	0	2	4	2	-1
2	1	-1	1	-3	0	2	0
0	0	0	1	2	0	0	-1
1	-2	1	0	1	-2	3	0
0	0	0	-1	1	2	0	0
0	0	0	0	0	0	0	0

Signal Entropy

Signal Entropy

Quantisation

Quantisation Error: 213-208 = 5

Mosquitos

Source File

2:1 Compressed JPEG

4:1 Compressed JPEG 12:1 Compressed JPEG

Mosquitoes

12:1 Compressed JPEG

Zig Zag Scan Pattern

Huffman Code Table

Variable Length Code	Run Length	Level
0000 110 s	0	4
0010 0110 s	0	5
0010 0001 s	0	6
0010 0101 s	1	3
0000 100 s	2	2
0010 0100 s	3	2
0001 01 s	6	1
0001 00 s	7	1
0000 111 s	8	1
0000 101 s	9	1
0010 0111 s	10	1
0010 0011 s	11	1
0010 0010 s	12	1
000001	Escape	
10	End_of_block	

Escape Codes

Run Length 0 - 63

Size -2047 to +2047

6 Bits

12 Bits

To System Comparison

- There are three forms of editing:
 - Camcorder based backspace Edit
 - Tape to tape editing
 - Hard disk based editing

- The unit recorded on tape is a GOP (B-frame, I-Frame)
- Recordings must start and finish at GOP boundaries
- B frame must be re-coded if the reference I-frame is removed

Backspace/Assembly Edit performed with an R frame

Insert Editing in a SX VTR

- The two machines are connected via SDI
- Edit is decode re-code
- Frame accurate editing is possible
- Existing frames around the edit point must be recoded
- Pre-read heads are used

Pre-read Process

Tape to tape editing

- Four possible scenarios exist
 - In-point is
 - B Frame
 - I frame
 - Out point is
 - B frame
 - I frame

In-point B-frame

Insert Edit performed in an A220

In-point I-frame

Out-point B-frame

Out-point I-frame

Frame accurate Editing

Editing MPEG

Overlap Edit
Hard disc edit where scene A+B are played out concurrently

Editing MPEG

MPEG transmitted as SDDI/4 x SDDI with an edit flag, in decoder first B frame after an edit is processed as an R frame

Multigeneration Performance

GOP Shift

System Comparison

- Betacam SX
 - 4:2:2 sampling
 - 608 lines
 - MPEG-2 422P@ML
 - 10:1 Compression
 - 'Full picture' compression ratio 9.1:1
 - Video Data Rate = 18 MBits/s
 - Audio 4 Channel, 48KHz, Uncompressed
 - Recorded Data Rate = 43.8Mb/s

System Comparison

DVC

- 4:2:0 sampling
- 576 lines
- DVC Compression (intra frame)
- '5:1' Compression
- Video data rate = 25 MBits/s
- 'Full picture' compression ratio 6.6:1
- Audio 2 channel, 48KHz, uncompressed
- Recorded data rate = 40.4Mb/s

- Is compression ratio a good measure of quality?
- What else must be considered?

Betacam SX Ratio: 10:1

I frame only MPEG Ratio: ~6:1 (equiv. 30 Mbps)

DV

Ratio: '5:1' (quoted) 'full picture' ratio 6.6:1

Data rate 4-8Mbps typically

MPEG Transmission Ratio: ~20:1

Quality Comparison

- Cannot use analogue measurement techniques
 - all systems produce 'perfect' results
- Data rate or Compression ratio is not a good measure of quality
- Different systems have different efficiencies
- Must measure system based on visual impairment

Textronix PQA

- Picture Quality Assessor
 - Compares reference sequence with recorder output
 - weights data on the basis of how we see
 - produces a PQR (Picture Quality Rating)
 - 0: Perfect No measurable error
 - 0-5, Good No noticeable error
 - 5-10 Fair Discernable errors, but 'Broadcast Quality'
 - 10+ Poor Not 'Broadcast Quality'

MPEG System Layer

Fr₁ Fr₂ Fr₃ 'Presentation Units' Fr₄ B_3 B ₁ 12 14 'Access Units' B ₁ В₃ 12 'Elementary Stream' PES HD HD Data Data Packetised Elementary Stream

Variable Length <64k (Except Video)

Stream Conversion

- SX native is output on SDTI
- Stream convertor turns this into TS
- This is data re-ordering and there is no quality loss.
- TS can be interfaced to ATM
 - again this is loss-less re-odering

SX is MPEG

&

Stream Conversion is a loss-less Process

- Transcoding is used by different people to mean different processes
- We use it to mean:

The conversion of one MPEG bit-stream into another without decoding back to baseband (SDI)

- Transcoding is a key technology
- Many companies are working on transcoding
 - Atlantic project
- Sony have a chip set and can demonstrate its function
- Transcoding has the advantage of:
 - minimising the loss of quality during the process
 - allowing coder decisions to be reused in a subsequent process
 - improving signal quality
- Principally transcoding keeps the signal in the MPEG domain

Transcoding

MPEG ES

MPEG Programme Stream

PES Header

MPEG Transport Stream

MPEG Transport Stream Generation

Programme Map Table

Transport Packet containing PMT

3	
PID for Clock Reference	46
PID for Video	512
PID for Audio	76
PID for Subtitle Data	5
etc	

Programme Map Table for Prog. 3

Programme Control

MPEG Clock System

Time Stamps

MPEG Transmission Sequence

MPEG-4

- Originally intended for very low data rate for:
 - Video conferencing
 - Portable video phones
- Low data limit raised (now 5Kbps to 10Mbps)
- Wide range of resolutions supported
- Progressive and interlace supported
- Now intended for complex multimedia type applications

MPEG-4

- Audiovisual scene made up of media objects:
 - Objects can be:
 - Natural or Synthetic
 - Audio or Video
 - Objects are composited into the scene
 - Objects can interact with objects at the receiver's end

Audio Coding

Profiles:

- Speech
- Synthesis
- Scalable
- Main
- High quality Audio
- Low delay audio
- Natural audio
- Mobile audio internetworking

Natural Audio Coding

TTS

Speech coding

General audio Coding

4KHz 8KHz 20KHz

Typical Audio Bandwidth

Audio Coding

- Synthetic Methods
 - TTS (Text to speech)
 - 200bps to 1200bps
 - text plus prosodic parameters
 - interface standard not normative sythesizer
 - Score driven
 - SAOL (Structured audio orchestra language)
 - Synthesis can be by many processes
 - wavetable, FM, additive and others
 - control is via "score"
 - MIDI can be used

Video Coding

- Profiles
 - for natural objects
 - Simple
 - Simple scalable
 - Core
 - Main
 - N-bit
 - for synthetic objects
 - Simple facial animation
 - Scalable textural
 - Basic Animated 2D Texture
 - Hybrid visual

Video Coding

- Synthetic objects
 - parametric coding of
 - faces
 - bodies
 - static and dynamic meshes
- Face Animation
 - Facial description parameters
 - Facial animation parameters
 - Face animation table
 - Face interpolation technique

Video coding

- 2D animated meshes
 - region of polygons
 - could have texture map

Example of a mesh from the MPEG-4 Standard

Sprite Coding

MPEG-4 supports moving sprite over static background

Example of sprite coding from the MPEG-4 Standard

MPEG Products

- Broadcast
 - VTRs Betacam SX, IMX
 - Servers MAV-70, MAV-555
- Contribution
 - EBU Standard
- DVD
 - players and authoring systems
- Transmission
 - Satellite and terrestrial

MPEG Open World

- Pro-MPEG Forum
 - Consortium of many companies working toward greater Interoperability

www.pro-mpeg.org

Thank You