

Frequency Planning for Digital Terrestrial Television

Interregional Seminar on Transition from SECAM to Digital Television Broadcasting

Kiev, November 2000

Perpar Stanko, univ.dipl.ing. RTV Slovenija OE Oddajniki in zveze

New ITU - R Study Group 6E

- Old organisation:
- Study Group 10: Sound Broadcasting
- Study Group 11: Television Broadcasting
- New organisation: Study Group 6: Sound and Vision Broadcasting
 - Working Party 6E contains former:
 - » Working Party 10 A sound < 30 MHz</p>
 - » Working Party 10 B sound > 30 MHz
 - » Working Party 11C television
 - » Part of Working Party 11A modulation.

ITU - R Working Party 6E Rec.. on Television Planning I.

◆ Analogue systems:

- BT. 417-4: Minimum field strengths for which protection may be sought in planning a television service,
- BT. 655-6: Radiofrequency protection ratios for AM
 VSB terrestrial television interfered with by unwanted analogue vision signals and their associated sound signals
- BT.419-3: Directivity and polarisation discrimination of antennas in the reception of television broadcasting,
- BT.804: Characteristics of TV receivers essential for frequency planning with PAL/SECAM/NTSC television systems systems

ITU - R Working Party 6E Recommendations on Planning 2

- BT. 1123: Planning methods for 625 line terrestrial television in VHF/UHF bands,
- BT. 805: Assessment of impairment caused to television reception by a wind turbine

◆ Digital systems:

- BT. 1125: Basic objectives for planning and implementation of digital terrestrial television broadcasting system,
- BT. 1368-2: Planning criteria for digital terrestrial television services in the VHF/UHF Bands
- BT. 1206: Spectrum shaping limits for digital terrestrial television broadcasting.

ITU - R Working Party 6E

In preparation:

Handbook on Digital Terrestrial Broadcasting

Second Part: Digital Terrestrial Television Planning

Document: ITU-R 6E/9

Digital Television Systems

- ◆ ATSC North America
- ◆DVB Europe
- ♦ ISDB Japan

Existing situation in EBA

European Broadcasting Area

- Frequency allocation according to Stockholm Agreement 1961
- over 58 000 stations in operation
- ◆ 3 channels in Band I, 8 channels in Band III,
- 49 channels in Bands IV and V

Existing situation in Europe

- Stockholm Agreement 1961:
 - still operational and active
- ◆ Technical characteristics of assignments
- Modification procedures based on coordination distances - Article 4

Existing situation in Europe

- ◆ An estimate of the number of TV sets in Europe is about 300 million, with value of approximately 250 000 million ECU.
- Broadcasting installations (studio, links, transmitters)
- ◆ Several hundred thousand people employed

Scenario of the Introduction of Digital Television

- 1998 First digital terrestrial services introduced
- 2005 Planning conference (e.g. revision of ST 61)
- 1998 20?? Transition period (Simulcast period)
- 2008 Start of phasing out of analogue service
- 2020 Future use of television frequency spectrum (e.g. Band III)

Scenario of the Introduction of Digital Television

Year in which analogue services will be switched off:

```
- 2006 USA (FCC)*
```

2007 Germany

- 2008 Italy

- 2012 Spain

– 2008 UK

^{*} By the year 2007 49% of American households will own digital receivers

Scenario of the Introduction of Digital Television

- ◆ Audio CD (one of the most successful digital components) has reached 50% penetration within 10 years
- ◆ In UK 405 line services have had 15 years simulcasting period
- * By 2007 49% of American households will own digital receivers

Transition Period - Simulcasting

It is very likely that the simulcast period will last:

from 10 to 15 years

Limiting factors

The most critical limiting factors for future development and introduction of digital terrestrial television are:

- **♦** Receivers
- ◆ Frequencies

Digital Terrestrial Receivers

- Set top box
- Price similar to satellite set top box (300 ECU)
- Noise figure (including implementation margin): 8 dB
- Only one channel bandwidth (7 or 8 MHz) is economical

Frequencies

- Most of the frequency spectrum reserved for television is engaged.
- ◆ In some countries in Europe channels 61 to 69 are not used
- ◆ Also some other channels are used for other services (e.g. channel 37)
- Planning constrains (Rec. BT. 1123)

Digital Television Standards used in Europe

- ◆ DVB T for terrestrial services
- ◆ DVB C for cable systems
- ◆ DVB S for satellite reception
- ◆ DVB MC for MMDS < 10 GHz
- \bullet DVB MS for MVDS > 10 GHz
- ◆ DVB SFN mega frame for SFN
- ◆ DVB SMATV for satellite Master Antenna TV distribution

- Possibilities for terrestrial reception:
 - fixed reception (outdoor antenna 10 m height)
 - portable reception outdoor (built-in antenna)
 - portable reception indoor (built-in antenna)
 - [mobile reception]

- OFDM number of carriers:
 - -2 k (UK)
 - -8k
- ◆ Possible modulation:
 - QPSK
 - 16 QAM
 - 64 QAM

- Guard interval:
 - 1/4
 - -1/8
 - -1/16
 - -1/32

- Code rates:
 - -1/2
 - -2/3
 - -3/4
 - -5/6
 - -7/8

Percentage of locations:

```
- 70% of locations - "acceptable" reception
```

– 95% of locations - "good" reception

[90% of locations in UK]

Location probability factor (ITU-R Rec.P.370-7)

50% to 70% 2.9 dB

50% to 95% 9.0 dB

- Gaussian channel (carrier predominant) for fixed reception,
- ◆ Ricean channel (carrier amplitude similar to noise) for portable outdoor reception,
- Rayleigh channel (carrier lost in noise) for portable indoor reception

Possible network configuration:

- Single Frequency Network
- Multiple Frequency Network
- Combinations MFN and SFN

- ◆ Typical request from broadcasters:
- ◆ Transition period:
 - 64 QAM, 2/3, fixed reception, good reception,
 4 to 5 multiplex
- ♦ Final stage:
 - 64 QAM, 2/3, portable reception, good reception, 5 to 6 multiplex

- ◆ Minimum field strengths (ITU-R BT. 417)
 - analogue:
- Band III
 55 dB μV/m
- Band IV 65 dB μV/m
- ♦ Band V 70 dB μV/m

Minimum Field strength Recommendation ITU-R BT. 417

Band	I	III	IV	V
Frequency (MHZ)	55	200	470	790
Input resistance (75Ω)	1,5	1,5	1,5	1,5
thermal noise dB(µV)				
Noise figure (dB)	9,5	8,5	11	12
Radio-frequency S/N (dB)	36	36	36	36
Minimum Rx input voltage	47	46	48,5	49,5
$dB(\mu V)$				
Dipole conversion factor and	2	13	20,5	25
mismatch allowance (dB)				
Antenna gain (dB)	3	7,5	10	12
Cable loss (dB)	1	1,5	3	4,5
Minimum usable field				
strength dB (mV/m)	47	53	62	67

64 QAM, fixed, good reception, 2/3 code rate, $\Delta = 1/4$, C/N cca 17 dB, 20MBit/s

Field strength: Digital Analogue

Band III: 45 dBμV/m 55 dBμV/m

◆Band IV: 50 dBµV/m 65 dBµV/m

♦ Band V: 54 dBμV/m 70 dBμV/m

64 QAM, portable, good reception, code rate 2/3, $\Delta = 1/4$, C/N = 17 dB

Field strength: Digital Analogue

 \bullet Band III: 62 dB μ V/m 55 dB μ V/m

 \bullet Band IV: 69 dB μ V/m 65 dB μ V/m

♦ Band V: $73 dB\mu V/m$ $70 dB\mu V/m$

64 QAM, portable indoor acceptable (or good) reception, code rate 2/3, $\Delta = 1/4$, C/N = 19 dB

Field strength: Digital Analogue

 \bullet Band III: 73 dB μ V/m 55 dB μ V/m

 \bullet Band IV: 83 dB μ V/m 65 dB μ V/m

 \bullet Band V: 87 dB μ V/m 70 dB μ V/m

Protection ratios:

- co-channel case
- upper adjacent channel case
- lower adjacent channel case

Co-channel Interference

- ◆ Continuos Interference T < 50 %
- ◆ Tropospheric Interference T = 1-10 %
- ◆ Steady state Interference T = 100 %
- ◆ Precision Offset stability ± 1 Hz
- ◆ Non-precision offset ± 500 Hz

- ◆ Cochannel Protection Ratios: Rec. BT.655
- Analogue/Analogue Signals:

	Trop.	Cont.
♦ Non-precision offset:	30 dB	40 dB
Precision offset:	22 dB	27 dB
◆ Limit of perceptibility:	36 dB	43 dB

Adjacent channel analogue/analogue PR:

- ◆ Lower adjacent channel (B,G): -9 dB
- ◆ Upper adjacent channel (B,G): -12 dB

PR for digital/digital (64 QAM 2/3):

♦ Co-channel:

Gaussian: 19 dB (22dB;27dB)

Rice: 20 dB

Rayleigh: 22 dB

◆ Adjacent channel: -40 dB (-9dB;-12dB)

Protection Ratios digital interfered by analogue: (PAL G/64 QAM,2/3)

```
◆ Co-channel: 4 dB (22;27 dB)
```

- ◆ Lower adjacent: -34 dB (-9 dB)
- ◆ Upper adjacent: -38 dB (-12 dB)

Protection Ratios analogue interfered by digital:

(64 QAM,2/3/ PAL G)

- ◆ Co-channel: 34(40)dB (22;27 dB)
- ◆Lower adjacent: -7(-4)dB (-9 dB)
- ◆ Upper adjacent: -9(-7) dB (-12 dB)

Frequency Planning

- Chester Agreement 97 (Technical Criteria, Coordination Principles and Procedures for introduction of DVB - T
- ◆ Reference situation 0.3 dB degradation

Frequency Planning Strategy

- Select optimal option for your country (number of national, regional and local networks - multiplexes)
- Study possibilities for frequency planning during simulcast period
- Frequency plan for all digital situation
- Plan for transition from simulcast to all digital period - coordinated with neighboring countries

Future of television planning

- Mobile television
- ◆ Interactive television

Mobile television

- ◆DVB T
- ♦ISDB T
- ◆ Mobile reception in the case of DVB-T is limited by Doppler frequency shift.
- ◆ At the VHF the maximal velocity is higher as at the UHF.

Interactivity

