Digital Satellite Broadcasting and HDTV Services in Japan

Masafumi Saito

Science and Technical Research Laboratories NHK (Japan Broadcasting Corporation)

Contents

- Present situation of satellite broadcasting in Japan
- ISDB-S transmission system
 - features
 - system configuration
 - service availability
- HDTV services by ISDB-S
 - assessment results of picture quality
- Conclusions

History of Satellite Broadcasting in Japan

May 1984: NHK started experimental broadcasting using BS-2a.

Jun. 1989: NHK started regular service(NTSC) and experimental

HDTV broadcasting using BS-2b.

Apr. 1991: BS-3 was in use. JSB started pay TV service.

Mar. 1996: Number of households that receive satellite

broadcasting exceeded 10 million.

Aug. 1997: BS-3 was replaced by BS4-1.

Mar. 2000: Number of households that receive satellite

broadcasting reached 14 million.

Dec. 2000: Launch of digital satellite broadcasting using ISDB-S.

Outline Scenario for Digital Satellite Broadcasting

Features of ISDB-S

- □ Large transmission capacity
 - two HDTV programs in one satellite channel
- Hierarchical modulation
 - minimum service available during heavy rain
- Operational flexibility
 - mixed transmission of HDTV and SDTV
 - independence between broadcasters who share one transponder
- Extensibility
 - EPG, data broadcasting, downloading, etc.

Summary of the system characteristics

Modulation scheme	TC8PSK/QPSK/BPSK
Raised cosine roll-off factor	0.35 (square root)
Transmission symbol rate	28.86 Mbaud
Video coding	MPEG-2
	MP@HL for 1080i
	MP@ML for 480i
	MP@H14 for 480p
Audio coding	MPEG-2 AAC
FEC (Outer code)	Reed-Solomon
	(204,188)
FEC (Inner code)	Convolutional
	(constraint length k=7)
Inner code ratio	1/2 for BPSK
	1/2, 2/3,3/4, 5/6, 7/8
	for QPSK
	2/3 for TC8PSK
Transport Layer	MPEG-2 systems
Packet size	188 bytes

RF Bandwidth 34.5 MHz

Payload Bit Rate 52 Mbps (max.)

Block Diagram of Channel Coding

Frame Structure and Transmission Signal

Transmission and Multiplexing Configuration Control (TMCC)

TMCC carries:

- frame synchronization
- modulation scheme and coding rate applied to each slot
- TS identification for each slot
- emergency alert signal
- information about site-diversity operation, etc.

TMCC is modulated with BPSK and coded with RS(64,48)

Service Availability of 12GHz Satellite Broadcasting

Example of Hierarchical Transmission

Penetration of HDTV Receivers in Japan

Relationship between viewing distance and required number of scanning lines

Subjective Assessment of HDTV Picture Quality

Conclusions

- □ ISDB by satellite starts in December 2000
- ☐ The ISDB-S system
 - large transmission capacity of 52 Mbps/ch
 - # two HDTV programs can be transmitted
 - robust transmission against heavy rain
 - # multiple modulation schemes and hierarchical transmission
 - high operational flexibility
 - # independence between broadcasters who share one transponder
- HDTV services in Japan
 - ISDB-S is expected to play a central roll on digital HDTV