

"Mobile Network Evolution to NGN"

Moscow Russia 27-30/04/2004 Roland THIES



### **Presentation Outline**

### What is NGN and how it applies in Mobile Networks?

- > Mobile Networks Architectures
- > Why NGN?





#### What is NGN?

#### **IGN: Next Generation Networks**

- Separation of
  - **★** Access Layer
  - **►** Transport Layer
  - Control Layer
  - **►** Service Layer
- with Control & Transport Layers being shared by
  - **★**the different Access Type (RAN, Fixed...)
  - **★** and Service Layers
- with Packet (ATM, IP) Transport converging toward IP transport
- ▼ for provision of Multimedia Services (Real Time, Presence, Messaging, Voice, Video, Data...)



# What is NGN?







# How NGN Applies in Mobile Networks?

- UMTS R99:
  - **►** Largely derived from GSM
  - **►** Last non-NGN Release
  - **►** Features content functionally frozen 12/2000
  - ► Still Change Requests (Mobile Test Plan to be finalised by 2H04)
- ►UMTS R4:
  - **► NGN** in Cs Domain with Separation of Control and User layers
    - **►** Introduction of Server & MGW
    - **►** Introduction of ATM and IP transport instead of TDM
  - ► Standard completed in March 2001 but still essential CR (TrFO...)
- ►UMTS R5:
  - **►** NGN for IMS
  - ► Introduction of MM Call Server with SIP Call Control Protocol
  - ► Standard Content frozen in June 2003 (many CR to come)



# GSM Radio Technology Evolution





#### **3GPP Network Evolution**



# How NGN Applies in Mobile Networks?

- CDMA 1x RTT:
  - **►** Extended radio technology from IS95
  - **►** Last non-NGN Release
  - **★** Release 0 in commercial service since Oct 2000
  - **▶ New overlay Packet Data Serving Node**
- ►CDMA 1x EV-DO:
  - ► Hybrid CDMA+TDMA technologies for bursty applications (High Speed Data)
    - **▶** Requires a separate carrier (1.25MHz), mainly deployed for hot zones.
    - ► Could be developed independent of IS95/1xRTT. (No MSC/VLR needed)
  - **►** Commercial service in SK, US since 2002
- -CDMA 1x EV-DV:
  - **► NGN** in Cs Domain with Separation of Control and User layers
  - **➡** Backward compatible with CDMA2000 1xRTT
  - **► Commercial service in 2005**



# CDMA2000 Radio Technology Evolution



DO: 1x Evolution Data Only, now also called HDR (high data rate)

DV: 1x Evolution Data and Voice

es are publication day of version 1.0 standard. (E.g. CDMA2000 Rel. A published version 1.0 in June 2000, and version 6.0 in Fe

2.)



# CDMA2000 Radio Technology Evolution



### 3GPP2 Network Evolution



### **Presentation Outline**

> What is NGN and how it applies in Mobile Networks?

- > Mobile Networks Architectures
  - > 2G/3G Mobile Networks
  - > NGN Evolution

> Why NGN?



### **GSM Architecture**



## **CDMA Architecture**





### 2.5G GPRS/EDGE





## 2.5G CDMA 1XRTT



# 3G W-CDMA R3 (R99)



### **Presentation Outline**

> What is NGN and how it applies in Mobile Networks?

- > Mobile Networks Architectures
  - > 2G/3G Mobile Networks
  - > NGN Evolution
- > Why NGN?



## 3G W-CDMA R4



# 3G W-CDMA R5 (IMS)



### 3G CDMA 2000



Data Rates 2 - 5 Mbps



# **Presentation Outline**

> What is NGN and how it applies in Mobile Networks?

> Mobile Networks Architectures

> Why NGN?



# Why NGN?

- I Transport Network Simplification
- 2 Higher Network Scalability
- 3 Bandwidth Saving
- 4 New Services





# y NGN?

#### ransport Network Simplification - Common Cs/Ps Backbone

- Only one transport backbone for Voice, Data on ATM or IP
  - **★**improved resources use efficiency
    - resources sharing
    - **★**one network management



# y NGN?

#### ransport Network Simplification - No Transit Layer

- No Need for Transit Layer MSC
  - **►** Dynamic connection establishment between nodes
  - in ATM through SVC, in IP through routing



#### NGN?

### ansport Network Simplification - Common Signalling/Packet Backbone

- **➡** With Signalling over IP, no Need for Dedicated Signalling Network
  - **★**simplification of transport network
  - **★**improved resource use efficiency



# y NGN?

#### ransport Network Simplification - Common CN/RAN backbone

- **►** With IP in RAN in R5, Merge of CN & RAN IP Transport Networks
  - **★**simplification of transport network
  - **★**improved resource use efficiency



# hy NGN? Bandwidth Saving

- **►** End to End AMR voice transport (3G/3G Call)
  - **►** Bandwidth optimisation
  - Transcoder saving
  - **►** Voice quality improvement



# hy NGN? Bandwidth Saving

- ► AMR in CN for 3G<->PSTN/2G PLMN Voice Call (R4)
  - **►** Bandwidth optimisation



# hy NGN? Bandwidth Saving (CS domain)

#### sport Bandwidth Efficiency (from R4 & beyond)

| transport type           | G711 over<br>TDM<br>(reference) | AMR over<br>ATM AAL2 | AMR over<br>POS IP V4 | AMR over<br>POS IP V6 | AMR over<br>GE IP V4 | AMR over<br>GE IP V6 | AMR over<br>IP V4 over<br>ATM AAL5 | AMR over<br>IP V6 over<br>ATM AAL5 | G71<br>ATM |
|--------------------------|---------------------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|------------------------------------|------------------------------------|------------|
| per <b>voice</b> channel | 64                              | 15                   | 34                    | 44                    | 49                   | 59                   | 51                                 | 51                                 |            |
| per <b>64kb data</b> ch. | 64                              | 85                   | 121                   | 141                   | 151                  | 171                  | 153                                | 204                                | ١          |

TM AAL2: the most efficient for both Voice and 64kb/s Data

OS: the most efficient of the IP transport

kb/s Data: Packet transport brings degradation

but data traffic on Cs should be low w/r to voice traffic



# Why NGN? 3- Bandwidth Saving (PS domain)

| Transport type  Byte per packet | IP over SDH | IP over ATM AAL5 |
|---------------------------------|-------------|------------------|
| 256 byte IP packet              | 267         | 318              |
| 512 byte IP packet              | 525         | 583              |

over SDH more efficient than IP over ATM (10 to 20%)



## y NGN?

#### lew Services Unified Services through standardized Interfaces





# hy NGN? New Services

as target transport layer with benefit of existing IP services rge and combination of existing services

- ► Standardized Video Communication (between fixed & mobile, video conferencing & video mail)
- **►Unified messaging** one mail box whatever the message (voice, text, video) & device type
- **►** Multimedia Messaging
- **►**Instant Messaging







# Why NGN?





# Conclusion

GN is the separation between Control and Transport
GN is mainly introduced in 3G UMTS R4/R5 and CDMA2000 1x EV-DV
hly one transport backbone for Voice, Data on ATM or IP

andwidth optimisation, Transcoder saving & Voice quality improvement

nen Mobile to Mobile/PSTN calls using TrFO

nified Services through standardized Interfaces independent of access layer type red, mobile, PC, Phone)

ews Services (Merge and combination of existing services):

- **►** Standardized Video Communication
- **►** Unified messaging
- **►** Multimedia Messaging
- **►** Instant Messaging



# /ww.ltu.lmt/ITU-D/lmt-200

Thank you for your attention....

