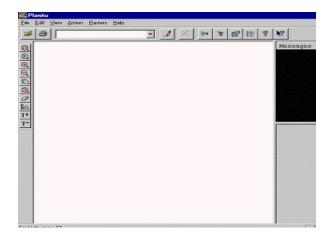


Regional Seminar on evolving network infrastructures to NGN and related Planning Strategies and Tools, for the CEE, CIS and Baltic States

Session 6.6

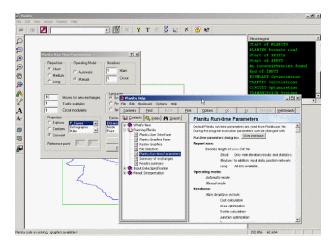
Case studies with traffic forecasting, optimization benefits and impact on solutions

Belgrade, Serbia and Montenegro, 20-24 June 2005


Case studies:

Traffic forecasting, optimization benefits and impact on solutions

Presented with application of the network planning tool PLANITU in the form of a live demo.


PLANITU is a tool for optimisation and dimensioning of telecom networks, based on an integrated interactive approach for finding minimum cost solutions for:

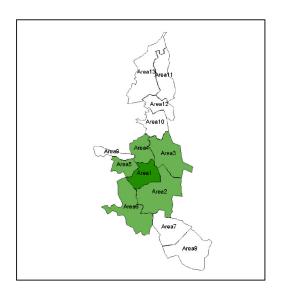
- location and boundaries of exchanges
- selection of switching and transmission equipment
- circuit quantities, traffic routing, switching hierarchy
- choice of transmission paths.

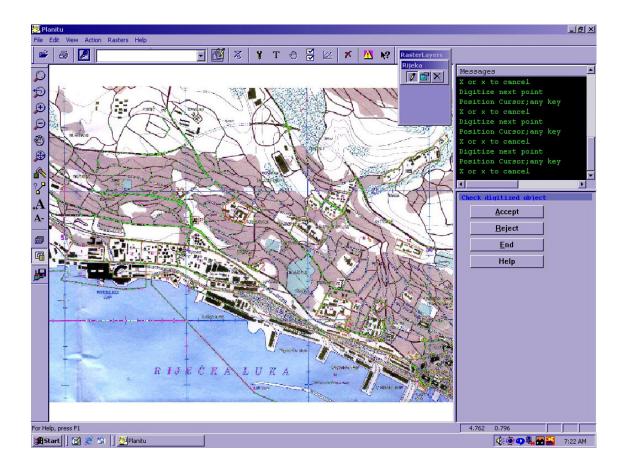
APPLICATION:

In PSTN circuit-switched (TDM) networks dimensioning and optimization , very limited for Data (packet) networks, limited for investigation of the evolution to NGN.

Application as training tool for network planning – set of real case studies data, self-training users manual, real-time help functions.

Service/Traffic forecasting:

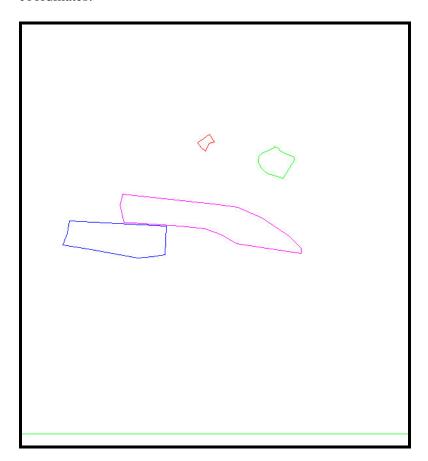

Digitizing of zones


Subscriber zones

Group of subscribers, homogeneously distributed in a geographical area (group of buildings, houses, etc.)

- usually the city centre is surrounded by urban areas with high customer density, while the areas in the edge are suburban areas
- often the set of areas is similar to exchange areas

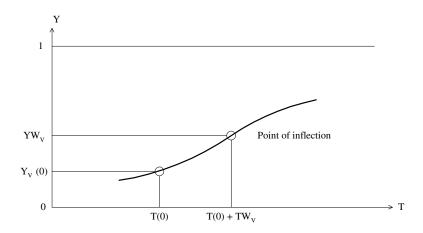
They can be from several to several hundreds.



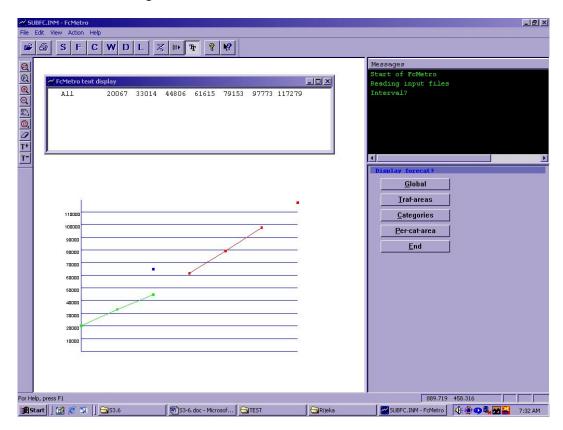
Digitizing of zones

Subscriber zones

Digitizing result – subscriber zones after digitizing with PLANITU as raster coordinates:


Digitizing result – data file with coordinates:

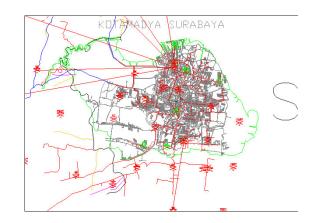
Z1 9 1Z	VT340	1.533	2.259	0.95	55 1	.215 1	0 1
1.533 1.041	1.565 1.128	1.578	1.215	2.259	1.179	2.250	0.977
2.159 0.964	2.058 0.955	1.706	1.014	1.533	1.041		
Z2 10 1Z	VT340	2.483	2.598	1.70)4 1	.823 2	0 1
2.483 1.764	2.511 1.727	2.538	1.704	2.547	1.736	2.566	1.759
2.598 1.768	2.566 1.823	2.520	1.791	2.488	1.768	2.483	1.764
Z3 15 1Z	VT340	1.935	3.210	0.98	32 1	.403 4	0 1
1.962 1.201	1.935 1.325	1.953	1.403	2.625	1.329	2.762	1.311
2.931 1.233	3.123 1.110	3.210	1.019	3.210	0.982	2.758	1.051
2.648 1.119	2.529 1.160	2.364	1.179	2.022	1.201	1.962	1.201
Z4 18 1Z	VT340	2.908	3.164	1.51	L2 1	.736 3	0 1
3.023 1.732	2.982 1.709	2.936	1.690	2.913	1.668	2.908	1.631
2.931 1.585	2.954 1.563	2.977	1.544	3.014	1.535	3.059	1.521
3.082 1.512	3.164 1.645	3.160	1.663	3.114	1.681	3.064	1.704
3.050 1.727	3.023 1.736	3.023	1.732				


Forecasting

Methods for forecasting of subscribers - Logistic model

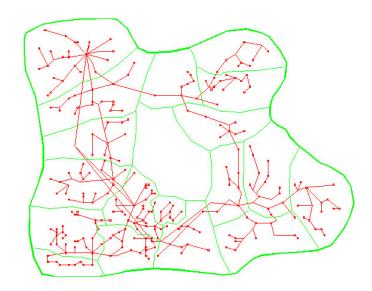
The development is supposed to follow a curve which first accelerates, then passes a point of inflection, and finally the development slows down and approaches an asymptote, the "saturation level", or "the maximum density".

Forecasting of subscribers result – subscriber forecast after proceeding with PLANITU forecasting tool FCRURAL :

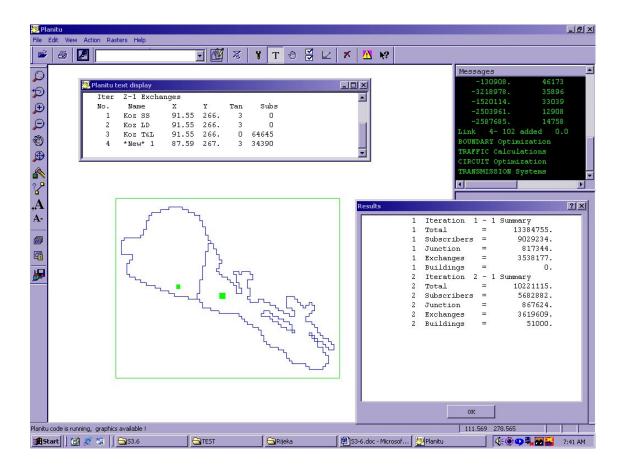


Optimization benefits and impact on solutions:

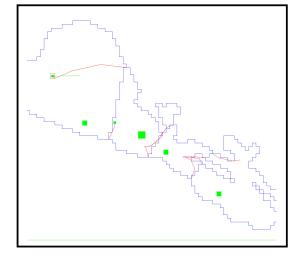
Optimizing of telecom networks


Local Networks optimization objectives:

- Exchange locations
- Exchange boundaries
- RSU locations & boundaries
- Inter-exchange network
- Exchange hierarchy
- Transmission systems

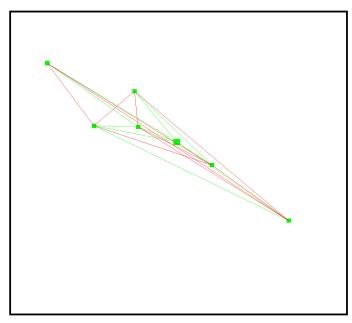

Rural Networks optimization objectives:

- Exchange locations & boundaries
- Exchange hierarchy
- Inter-exchange network
- Transmission systems


Optimizing of local network

Optimization results – application of PLANITU for optimization of a local network with results for number of exchanges/RSUs, optimized locations and service areas, routing and dimensioning of junction network, etc. :

Optimization results – application of PLANITU for optimization of a local network


with results for new exchange locations:

Optimization results – application of PLANITU for optimization of a local network with results for optimal number of exchanges, locations and service areas :

Optimization results – application of PLANITU for optimization of a local network with results for routing in the network :

Optimization results – output text results from the application of PLANITU for optimization of a local network.

Results for the total network costs and summary for number of exchanges, coordinates of the locations and service areas as subscribers quantity:

```
Total Cost of Network= 6472179.00

Cost of Subscribers = 1327214.62
    Cost of Junctions (S) = 697296.00
    Cost of Exchanges = 3814172.75
    Cost of Buildings = 306000.00

No. Name X Y Tan Subs SubCost ExCost BuildCst

1 Koz SS 91.55 266.30 3 0 0. 57965. 0.
2 Koz LD 91.55 266.30 3 0 0. 69000. 0.
3 Koz T&L 91.55 266.30 0 24657 252233. 877750. 0.
4 *New* 1 87.59 267.14 3 16800 201739. 620040. 51000.
5 *New* 2 96.93 262.21 3 12142 284396. 456223. 51000.
6 *New* 3 93.24 265.10 3 19412 204951. 705714. 51000.
7 *New* 4 85.35 270.40 3 8446 201701. 334994. 51000.
8 *New* 5 89.71 267.09 3 11317 84495. 429163. 51000.
9 *New* 6 89.53 268.95 3 6261 97698. 263326. 510000.
```

Results for the transmission media used in the network as subscriber cables, interexchange transmission systems, etc. :

Cable	Junction		Subscriber		Total		
Type	Pairs	PairKm	Pairs	PairKm	Pairs	PairKm	
0.4	0	0.	96413	110983.	96413	110983.	
0.6	0	0.	2543	10466.	2543	10466.	
0.8	0	0.	0	0.	0	0.	
0.81	0	0.	0	0.	0	0.	
pcm0	8760	36400.	0	0.	8760	36400.	
pcm1	0	0.	0	0.	0	0.	
pcm2	0	0.	0	0.	0	0.	
rsu	0	0.	0	0.	0	0.	
fict	0	0.	79	407.	79	407.	

Results for the traffic flows accumulation in the exchanges as incoming, outgoing and transiting traffics and the corresponding conversion to equipment (inter-exchange circuits):

```
      Statistics for Circuits & Traffics

      Exchange
      Circuits
      Peak Traffics

      # Name
      Inc Outg
      Inc Outg Transit

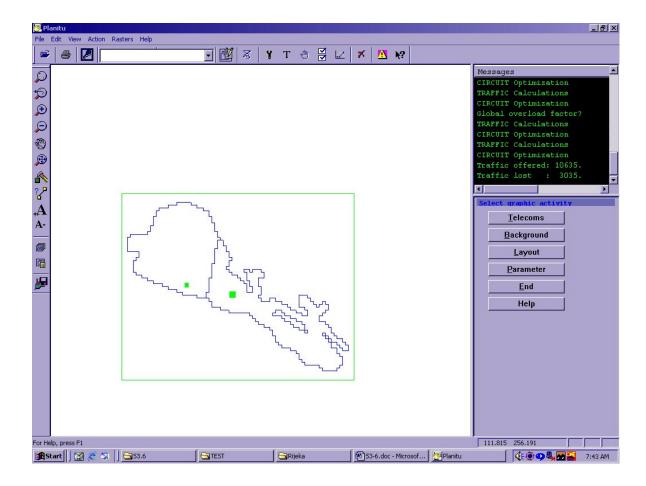
      1 Koz SS
      150 0 98. 0. 0.
      0.

      2 Koz LD 1680 1440 1535. 1272. 0.
      0.

      3 Koz T&L 2430 2460 1806. 1779. 253.
      4 *New* 1 960 930 780. 780. 0.

      5 *New* 2 660 900 543. 747. 0.
      0.

      6 *New* 3 1020 1380 867. 1194. 0.
      0.


      7 *New* 4 510 480 398. 369. 0.
      0.

      8 *New* 5 930 870 758. 715. 0.
      0.

      9 *New* 6 420 300 306. 234. 0.
```

Sensitivity analysis

Sensitivity analysis results – application of PLANITU for verifying of the sensitivity of the optimized network for traffic overload :

End of the case study for traffic forecasting optimization benefits and impact on solutions with the application of the PLANITU network planning tool.