

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology

A Case Study on Business Modeling and Planning Process

Roland Götz LS telcom AG

ITU Regional Seminar on Broadband Wireless Access (BWA) for rural and remote areas for the Asia-Pacific Region

Shenzhen, P. R. China, 1-2 September 2005

Agenda

- Company Introduction
- Case Study
 - · Definition of Scenarios
 - · Comparison and Selection of Equipment
 - Planning Guideline
 - Tool-based Network Design
 - Results
- · Lessons Learned

Lines of Business – RF Engineering Software Tools

Radio Network Planning Tools

Mobile Networks

Solutions for fast and costefficient rollout, operation and optimization of mobile communication networks

- Covers the whole range of mobile network planning aspects
- Multi Technology Support (TETRA, TETRAPOL, 2G, GSM, CDMA,2,5G, 3G, WCDMA)

Microwave Networks

Design tool for microwave links, WLL, PMP, WiMAX

- Interactive link engineering
- Interference analysis
- ▶Channel assignment
- ➤ Availability calculation
- ➤ Flexible report generation
- ➤ Implemented ITU-R recommendations

Broadcast Networks

Design tool for the planning and coordination of analog (FM,TV) and digital (DAB, DVB, DRM) networks

- Frequency selections according to ITU recommendations and plans
- ➤ LF/MF and HF frequency coverage

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process rgoetz@LStelcom.com

Lines of Business

Engineering Services (Radio Network Planning)

Radio Network Planning and Engineering Services

This comprises all sorts of engineering and planning services relevant to network operators, regulatory organisations and system suppliers, including:

- coverage analysis and studies
- frequency planning & coordination services
- network design (cellular and transmission)
- network implementation
- network optimisation: coverage, interferences, capacity
- geo data: consulting, generation, conversion and acquisition
- project management

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process

goetz@LStelcom.com

4

Lines of Business

Consulting Services & Training

- Our Consulting Team includes Spectrum Managers and RF Specialists, who have managed Spectrum of various countries and assisted regulators worldwide.
- Several hundred person years of experience and capability in:
 - Feasibility Studies / Expert Surveys
 - Vendor Selection
 - Process / Workflow Development
 - Technical Concepts
 - Radio Policy
 - Frequency Planning
 - Spectrum Operations
 - Automated Tools
 - Radio Monitoring
 - Preparation of Tender Documents

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process goetz@LStelcom.com

Lines of Business – Consulting Services & Training

Trainings and Seminars

This comprises a wide variety of trainings in the whole field of telecommunications, including:

- Basic- and Expert-seminars for our Software Solutions
- Expert trainings for Radio Network Planning (mobile, microwave, WiMAX...)
- Seminars for Broadcast Planning (RRC04/06, TV, FM, ...DAB, DVB, DRM...)
- Spectrum Management Workshops
- Expert Trainings on Spectrum Monitoring

ITU Centers of Excellence

LS TrainingCenter, Germany

AIBD - Asia-Pacific Institute for Broadcasting Development, Malaysia

rgoetz@LStelcom.com

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technolog A Case Study on Business Modeling and Planning Process

Why Customers Choose LS telcom?

- More Than 13 Years of Experience in the specific Market
- Successfully Completed Projects at More than 50 Coutries (Regulators and Operators) Wordwide
- Market Leader and Trendsetter in Spectrum Management Solutions
- One-Stop-Company (Consultancy, Software Solutions, Digital Mapping Data, Implementation, Support and After-Sales Services)
- Extensive Human Resources
- Stable and Reliable Partner

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology
A Case Study on Business Modeling and Planning Process

rgoetz@LStelcom.com

LS telcom

Case Study

Planning Fixed Broadband Wireless Access Networks

Case Study: Planning Fixed BWA Networks

Project Description

- BWA Network to provide fast Internet
- 3,5 GHz band
- Three different Scenarios
 - Scenario 1: Rural Area
 - ▶ Scenario 2: Suburban Area
 - ▶ Scenario 3: Urban Area
- Basic Business Model and Coverage Criteria

Project Steps

- Definition of the "Scenarios"
- Comparison of available Hardware
- Definition of the Planning Guideline
- Tool-based Network Design

rgoetz@LStelcom.com www.LStelcom.com

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process

Scenario "Rural Area"

- Valley, villages
- Lower average income
- Lower penetration of home computers
- Fewer business
- No DSL via cable available
- Residential-dominated market
- Outdoor coverage (using outdoor antenna)
- Large cell sizes
- Existing core network / microwave link for backhaul
- Data Rate: >1.0 Mbit/s

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process rgoetz@LStelcom.com www.LStelcom.com

Scenario "Suburban Area"

- Valley, medium-sized city
- Average income
- Medium penetration of home computers
- Small business
- Partly cable or DSL, limited competition
- Residential & small business market
- Outdoor coverage (using outdoor antenna) dominant
- Medium cell sizes
- Extension (more capacity) of existing core network necessary
- Data Rate: >2.5 Mbit/s 40%

>1.0 Mbit/s: 60%

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMA>
A Case Study on Business Modeling and Planning Process

rgoetz@LStelcom.com

Scenario "Urban Area"

- Major city, high-rise buildings
- Many potential WiMAX customers
- High penetration of home computers
- Many business users
- Cable or DSL available, strong competition
- Residential & business market
- Indoor coverage dominant
- Small cell sizes
- Extension (more capacity) of existing or new core network necessary
- Data Rate: >2.5 Mbit/s 60%

>1.0 Mbit/s: 40%

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process

rgoetz@LStelcom.com

LS telcom **Hardware Comparison & Selection** Technical Data Base Stations Vendor 3 256 FFT OFDM / TDMA Vendor 1 CDMA (MC-SCDMA) PPMA Duplex Mode TDD/FDD HD- FDD/TDD max. 47 dBm (EIRP) max. 27 dBm max. 33 dBm Ausgangsleistung 5 Mhz, 10 x 500 kHz sub-1 MHz sub-channel spacing 3,5 / 7 / 14 MHz channel max. 18 dBi (15 °Antenne) max. 12 dBi (60 °Antenne) 2 / 4 / 8 CPFSK BPSK, QPSK, 6QAM, channels max. 17 dBi Antennengewinn QPSK / 8BPSK / 16 QAM 64QAM 35 Mbit/s (64QAM) 4.2 Mbit/s (16 QAM) max. Kapazität pro Sektor (5 MHz) 4 Mbit/s max. Sektoranzahl pro BS 24 BSRs Technical Data User Terminals Vendor 2 Vendor 3 Output Power 27 dBm Antenna Gain max. 6 dBi (internal; Antenne integrated) Bandwidth 5Mhz, 10x500 kHz sub-1 MHz sub-channel 3,5 MHz channel spacing channels spacing Modulation 2 / 4 / 8 CPFSK BPSK, QPSK, 16QAM, 64QAM 2,2 Mbit/s (QPSK) 4 Mbit/s (8CPFSK) 13,1 Mbit/s (3,5 MHz,FDD) Capaity (max.) Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process rgoetz@LStelcom.com © 2005 by LS telcom AG

Hardware Comparison & Selection

Different scenarios

Different requirements

Different business cases

One equipment type will not be the winner for all scenarios Each scenario could have his "own" favourite equipment

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WIMAX Technolog
A Case Study on Business Modeling and Planning Process

rgoetz@LStelcom.com www.LStelcom.com

Planning Guideline WiMAX Network Planning Issues

Sufficiently high Reliability and Accuracy of the Prediction required

- To decide whether service can be provided at all
- To distinguish between various service classes

Under the constrains

- Often NLOS radio channels
 - Prediction of received signal levels (wanted and interferer) extremely difficult and require expensive 3D terrain and building data
- Different user terminals in use
 - Indoor (quasi omni antenna)
 - User mounted antenna at window (directive antenna)
 - ▶ (Roof antenna)

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technolog A Case Study on Business Modeling and Planning Process rgoetz@LStelcom.com www.LStelcom.com

Planning Guideline Parameters

Rural Area

- Based on existing sites
- Antenna height: 20m above ground
- Receiver height: 2.5 / 5.0 / 9.0 m

Medium Resolution Data (25m / 50m)

based on 2 different files:

- Digital Terrain Model, elevation of earthsurface
- Digital Clutter Model, describing land use above terrain
- Provide no building heights

Deterministic or empirical prediction model

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX A Case Study on Business Modeling and Planning Process

Planning Guideline Parameters

Suburban and Urban Area

- "greenfield" planning, fictive sites
- Antenna height: 3m above rooftop
- Receiver height: 2.5 / 5.0 / 9.0 m

High Resolution Data (1m / 5m)

- Digital Elevation Model, elevation of earth surface + building heigths
- Sat-Image, 1m resolution
- Provide details of buildings

Deterministic, empirical prediction model or 3D ray-tracing model

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMA A Case Study on Business Modeling and Planning Proces

12

Results

- Exact statement whether a NLOS subscriber can be reached with a defined quality of service is extremly difficult and requires highest standar on terrain data and planning algorithms
- Basic LOS and NLOS analysis allows rough statement about subscriber coverage
- Different scenarios (environments) need different business cases
- The "rural scenario", has lowest investment, a short payback period, low competition -> reduced investment risk
- Selected cherry-pick-regions could be used by new operators to build up quality standards, operation concepts, reputation in a low risk environment (technical & finacial)

© 2005 by LS telcom AG

Planning Fixed Broadband Wireless Access Networks based on WiMAX Technology A Case Study on Business Modeling and Planning Process rgoetz@LStelcom.com www.LStelcom.com

33

