A comparative analysis of wired and wireless systems and their effectiveness in bridging the digital divide in developing countries

Presenter:

Jared Baraza, Kenyatta University, Nairobi Kenya.

Contents

- 1. Introduction
- 2. Present scenario in developing countries
- 3. Possible wireless solutions
- 4. Comparison of wireless and wireline systems
- 5. Way forward

1. Introduction

Network design engineers in developing countries are challenged to select the best system that suits the needs of operators at an economical cost.

- Important issues to consider:
 - · Performance,
 - · availability,
 - capacity,
 - coverage,
 - bandwidth,
 - · QOS and
 - Cost per line
 - ARPU

2. Present scenario I

- 2.1 In urban & sub urban areas in Kenya:
 - Very dense populations
 - High traffic, High calling rates
 - Fixed lines are not readily available
 - Frequent breakdowns of cables
 - Long MTTR
 - Poor and obsolete cable infrastructure
 - Majority use mobile phones
 - Internet services are very poor
 - (low speed, frequent breakdowns)

2. Present Scenario II

2.2 Rural areas in Kenya:

- Sparsely populated villages and communes
- Long distances between service areas
- No telephones
- Poor road infrastructure
- Difficult terrain (rivers, forests, hills, swamps)
- No commercial power supply
- Majority cannot afford mobile phones
- No Internet

3. Possible wireless solutions

The following broadband wireless systems are useful in providing last mile access and trunking in rural and sub-urban areas:

- SDH Radio,
- WiFi,
- WiMax,
- Hyper LAN,
- VSAT,
- CDMA 450 and CDMA2000,
- WCDMA/UMTS,
- Free Space Optics (FSO).

4. Why broadband wireless

- High demand for broadband services (Bandwidth) in excess of 2 Mbps
- Readily available mass market for :
 - (Voice, SMS, Internet, Leased line, PVNs ..)
- Can be rapidly rolled out across hills, valleys, swamps
- Ease of maintenance
- Mature field proven technologies
- High transmission speeds 54mbps, 74 mbps..
- Low Capex per line
- High ARPU
- Multiple services on same network: voice, data, Email, Facsimile, Voice mail, SMS

4.1 Comparison: Which broadband technology I

Before choosing the technology compare the following:

(a) Technical parameters:

- » System capacity
- » Bandwidth and number of channels
- » Spectral efficiency (bits per Hz)
- » Maximum traffic per BTS
- » Data throughput under load
- » Range/Coverage per BTS
- » Modulation scheme used
- » Signal to Interference Ratio
- » Security over the air interface
- » Power source and nominal power rating
- » Performance test results in the field and OOS

4.2 Comparison: Which broadband technology II

- Economic factors to consider:
 - Manufactured to which standards? ITU-R or proprietary
 - Cost per line
 - Cost of Operating Software upgrade
 - Average Return Per User
 - Mean Time Before Failure (MTBF)
 - Mean Time To Repair (MTTR) by vendor
 - Warranty by vendor
 - Is system upgrade possible both hardware and software
 - Operation and maintenance contracts

4.3.1 Comparison Matrix 1

- Comparison of wired systems:
 - DSL
 - Coaxial Cable
 - Optical fiber with WDM/DWDM

4.3.2 Comparison matrix 2

- Wireless systems:
 - SDH Radio
 - WiFi
 - WiMax
 - HyperLAN
 - Satellite (VSAT)
 - Free Space Optics (FSO)
 - CDMA 450/2000
 - GSM,
 - UMTS

5. Way forward and conclusion

- Technological study & analysis of wireless systems vital before implementation
- Economic analysis and feasibility study necessary
- Training of technical personnel important
- Broadband wireless systems can bridge the digital divide in rural and sub urban areas in developing countries