Spectrum Forecast for Mobile Broadband

Wladimir Bocquet

Deputy Director Strategy & International Planning Group Spectrum Office

Orange – FT Group

May 18-19, 2009

General introduction

Concept of Mobile Broadband

3

Importance of spectrum harmonisation

Next steps & Conclusion

Orange – FT Group: Where we are?

→ serving - consumers in 27 countries

- corporates in 220 countries and territories

Background: Better understanding of mobile data traffic in Europe

significant increase of voice + data traffic

- traffic growth driven by
 - new Mobile Broadband capable devices
 - increase in term of penetration

Background: Mobile broadband subscription growth in Africa

- 365 million GSM & WCDMA-HSPA
- Including over 6.8 million WCDMA-HSPA subscriptions

General introduction

Concept of Mobile Broadband

Importance of spectrum harmonisation

Next steps & Conclusion

What is Broadband?

Importance of Spectrum & Technology

Mobile Broadband: A global trend toward LTE

Mobile Broadband:

Radio efficiency improves regularly with new features

average carrier capacity in Mbps

- Improvement requires devices at the same level of standard to achieve full capability
- Some devices features greatly influence capacity, notably receiver diversity and advanced receiver

General introduction

Concept of Mobile Broadband

Importance of spectrum harmonisation

Why do we need harmonisation?

- Harmonisation is still key
 - Harmonising spectrum has been the bedrock of the success of technologies such as GSM by driving equipment & device economies of scale
 - The process of releasing more spectrum has, however, highlighted the difficulties of harmonising both spectrum allocation & bandplans across regions
 - Concerted efforts are needed by national & international regulators to limit any differences on spectrum licensing

Maximising technology economies of scale through spectrum harmonisation and ensuring effective link between spectrum strategy & device availability is key

Spectrum Harmonisation & Mobile Broadband: The customer perspectives

customer benefit from the Spectrum Harmonisation

efficiency

- always connected / distant presence
- acceleration of transactions
- time ambivalence, hyper life
- network valuation

flexibility

- Access to common contents
- large device offer
- FMS/FMC
- facilitate roaming

customer behaviour with Mobile Broadband

serenity

- abundance promise
- peace of mind / simplicity
- security and privacy

entertainment

- on demand (content & services)
- me and my communities
- from mass media to my media

ethics and involvement

- responsible purchase
- CO₂ footprint lowering
- information transparency

Spectrum Harmonisation: A time consuming process

Time to achieve regional & international spectrum harmonization is about several years from start to commercial volumes

Example of the IMT systems

- -1985: SG8 IWP8/13 Established in ITU CCIR for initial study of FPLMTS
- -1992: WARC'92 allocated 230MHz for IMT-2000 in 2GHz band:
 - 1885-2025 MHz
 - 2110-2200 MHz
- •1997: FPLMTS renamed to IMT-2000 & Study of introduction of family concept started
- -2000: IMT.RSPC (M.1457) detailed specification of five IMT-2000 families member and approved by RA'00
- -2000: WRC'00 identified additional frequency bands for IMT-2000
 - –806-960 MHz
 - –1710-1885 MHz
 - –2500-2690 MHz
- -2007: WRC'07 additional frequency for IMT Family
 - –450-470 MHz
 - -698/790-960MHz → Digital dividend partially UHF band
 - -2300-2400 MHz
 - -3400-3600 MHz

Spectrum Harmonisation: Limit the interference risks

- Ensure availability of clean spectrum
 - Protect the rights of users
 - Keep the records of rights of use (assignments)
 - Control spectrum use (spectrum monitoring)

 In-band interference: frequency overlap between the transmitter and receiver operating bandwidths.
→Typically for both to be able to operate without excessive interference this implies a degree of geographic separation or coordinated time/code sharing.

• Out-of-band interference: no overlap in frequency between the transmitter and receiver's bandwidth, but the geographic separation is sufficiently small that there can be appreciable interfering signal. two sub-types of this path:

- o In-band emissions received out-of-band
 - due to imperfections in the filtering of the receiver
- o Out-of-band emissions received in-band
 - due to imperfections in the filtering of the transmitter

Spectrum Harmonisation: How to prevent interference?

General introduction

Concept of Mobile Broadband

Importance of spectrum harmonisation

Next steps & Conclusion

Key topics for WRC 2011: Importance of the Backhauling

Risk of interference

- Long term impact on the ICT regional development
- Importance of the harmonisation

- Some Agenda Items of the WRC11 may impact Fixed Services
 - Need specific attention

Agenda Item	Resolution
1.11	consider a primary allocation to the SRS (Earth-to-space) within the band 22.55- 23.15 GHz Res. 753 (WRC-07)
1.12	protect the primary services in the band 37- 38 GHz from interference resulting from AMS operations Res. 754 (WRC-07)
1.13	studies on spectrum usage of the 21.4-22 GHz band for the BSS and the associated feeder-link bands in Regions 1 and 3 Res. 551 (WRC-07)
1.14	consider requirements for new applications in the RLS qnd review allocations or regulatory provisions for implementations of RLS in the range 30-300 MHz Res. 611 (WRC-07)
1.20	studies on spectrum iden-tification for gateway links for HAPS in range 5850- 7075 MHz to support operations in the FS and MS Res. 734 (WRC-07)
1.21	consider a primary allocation to the RLS in the band 15.4-15.7 GHz Res.614 (WRC- 07)

Spectrum Harmonisation: Summary

Critical Resource

- Spectrum is not infinite for mobile broadband
 - Importance of ITU activity and WRC-11
- Long term vision is necessary for spectrum allocation
- Regional & International harmonization of spectrum
 - Access to common services
 - Ecosystem to perform interoperability
 - International roaming
 - Economy of scale \rightarrow availability of affordable products

Harmonised approach required across Region 1 to secure affordable mobile broadband with high performance at reasonable cost

thank you