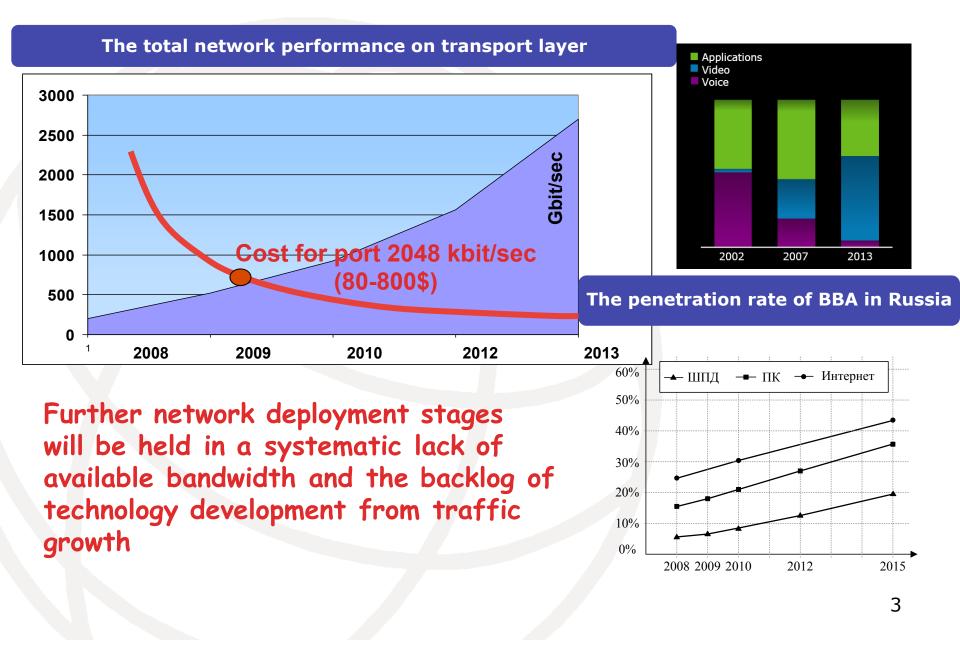
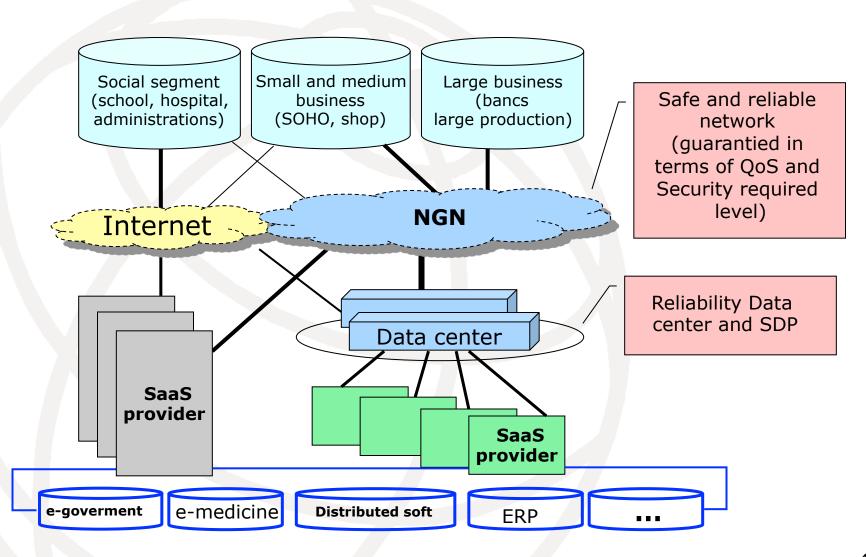
ITU Forum on Conformance and Interoperability Testing in CIS and Europe Regions (Moscow, Russia, 9-11 November 2011)

Handbook on Network performance testing and control for guarantee required QoS for NGN services

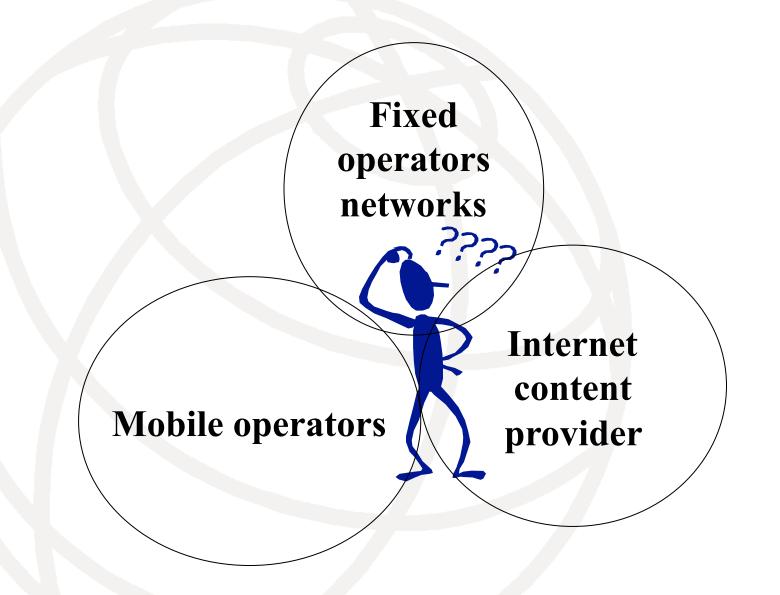
Denis Andreev Rapporteur of Q.10/11 & Q.11/11 ZNIIS, Moscow



Moscow, Russia, 9-11 November 2011


Content

- 1. Explanation of QoS/QoE/NP Handbook creation in ITU
- 2. History of Handbook creation
- **3. The short overview of Handbook contents**
- 4. The typical approach and common problems on QoS estimation
- 5. Innovation approach for estimation and QoS support
- 6. The Russia expierence on International projects on QoS/QoE/NP testing


Exist situation and dynamics of global telecom market in services

Future model of Telecom services

Whose will be the customer?

The common exist problematic on QoS support

- The network deployment based on packet switching technologies
- Service distribution without correspondence with telecommunication technologies
- The payload increase in transport network in consequence of increase broadband of access layer (on 50 % each of the year) Jakob Nielsen
- ✓ Heterogeneous network environment (TDM and IP)
- Reduce of reliability rate in case of usages different vendors solutions

The history of Handbook QoS/QoE/NP testing creation

- 1. ITTC project (joint project ITU-D ZNIIS) CIS-008
- 2. Testing results on the ZNIIS Model network under ETSI project STF392
- 3. Creation the Handbook for CIS Region as Guide for QoS/QoE support for exist operators
- 4. The special reports of QoS/QoE/NP testing on the Model networks for CIS operators was published as a Annex of Handbook
- 5. Creation the ITU-T Handbook as a guide for international community as a global Guide for QoS/ QoE/NP testing and monitoring (has just presented under SG11 October 2011 meeting) – was sent to All SG's ITU-T as a reference document
- 6. It was sent to ETSI for comments and with proposal to prepare the special technical ETSI document which will content this Handbook as a guide for Europe ⁷

Contents of Handbook

Part 1. Overview of exist approach of QoS support

Part 2. Network performance testing for supporting required values of QoS

Part 3. Network performance monitoring for required QoS parameters supporting

Part 4. SLA

Annex A The list of NGN services under ITU/ ETSI releases

Annex C QoS/QoE/NP Testing results on the Model network (Russia)

6. PART 1. OVERVIEW OF EXIST APPROACH OF QOS SUPPORT

6.1. QOS STANDARDIZATION

- 6.1.1. Determination of QoS definition
- 6.1.2. Exist ITU-T recommendations in QoS area
- 6.1.3. ETSI specifications in QoS area
- 6.2. LIST AND VALUES OF QOS PARAMETERS
 - 6.2.1. Key QoS parameters for voice services
 - 6.2.2. Values on key QoS parameters for voice services
 - 6.2.3. QoS parameters and values for telematic services
 - 6.2.4. QoS parameters and values for VAS services (Value Added Services)
 - 6.2.5. Key QoS parameters and values for IP networks
- 6.3. THE EXIST APPROACH FOR QOS CONTROL/MONITORING
 - 6.3.1. Technology of MPLS TE traffic control
 - 6.3.2. Resource admission control function/subsystem (RACF/RACS)
 - 6.3.3. Technologies NSIS/NSLP/NTLP/GIST

7. PART 2. NETWORK PERFORMANCE TESTING FOR SUPPORTING REQUIRED VALUES OF QOS

- 7.1. THE TYPICAL NGN NETWORK-SOLUTION IMPLEMENTED ON THE EXIST OPERATOR NETWORKS
- 7.2. THE SET OF NGN SERVICES
- 7.3. THE METHODOLOGY OF QOS PARAMETERS TESTING AND CORRESPONDENCE OF NETWORK
- PERFORMANCE PARAMETERS
 - 7.3.1. The methodology of QoS parameters testing on the exist operator networks
 - 7.3.2. The limit values of network performance parameters determination for supporting required parameters of QoS
- 7.4. THE NETWORK PERFORMANCE TESTING PROGRAM
- 7.5. THE NETWORK PERFORMANCE TESTING SPECIFICATION
 - 7.5.1. Voice service transfer under IP networks (VoIP)
 - 7.5.2. Fax service under IP networks (FoIP)
- 7.6. FORMALIZATION RESULTS OF TESTING
 - 7.6.1. Common issues
 - 7.6.2. Formalization process

8. PART 3. NETWORK PERFORMANCE MONITORING FOR REQUIRED QOS PARAMETERS SUPPORTING

- 8.1. PURPOSE AND TASKS OF NETWORK PERFORMANCE MONITORING SYSTEM
- **8.2.** The typical architecture of Network-Solution for monitoring Network Performance Parameters
- 8.3. THE SET OF NETWORK PERFORMANCE PARAMETERS FOR MONITORING
- 8.4. The methodology of Network Performance Monitoring
- 8.5. THE EXIST APPROACHES FOR CONTROL AND MONITORING QOS PARAMETERS AND QOS PARAMETERS
- **8.6.** STANDARDIZATION OF RESOURCE CONTROL SYSTEM WITH PURPOSE NETWORK PERFORMANCE CONTROL FOR GUARANTEE REQUIRED QOS

9. PART 4. SLA

- 9.1. THE TYPICAL DEFINITION OF SLA
- 9.2. TYPES OF SLA
- 9.3. STRUCTURE OF TYPICAL SLA
- 9.4. SLA IMPLEMENTATION PROCESS ON THE OPERATORS NETWORKS

Annex A

The list of NGN services of different Releases in accordance with ITU-T Recommendations and ETSI Specifications

Annex B. Signaling timers for SIP-IMS protocol

Annex C. NP/QoS testing results on Model networks

The common terminology of QoS and QoE

QoS

On the basis of the general concept of quality the basic terms of Quality of Service (QoS) have been defined in the Recommendation ITU-T E.800

The Recommendation ITU-T E.800 the following definition of QoS are given: «Totality of characteristics of a telecommunications service that bear on its ability to satisfy stated and implied needs of the user of the service»

The common terminology of QoS and QoE

QoE

At the present time in the world telecommunication community the quality of experience (QoE) term is used for estimation the quality of services as integrated indicator. In accordance with Recommendation ITU-T P. 10 (2-nd edition), the concept of QoE is defined as the admissibility of services or applications in general, subjectively perceived by the end-user

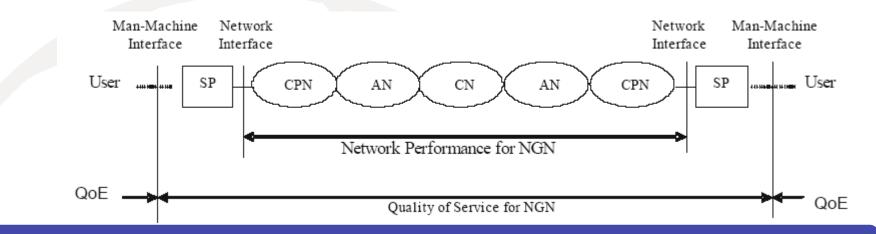
QoE is integral index, which includes both an evaluation of the quality of the transfer of user payload, and with the experience of the user to the appropriate service

QoE for telephonic services

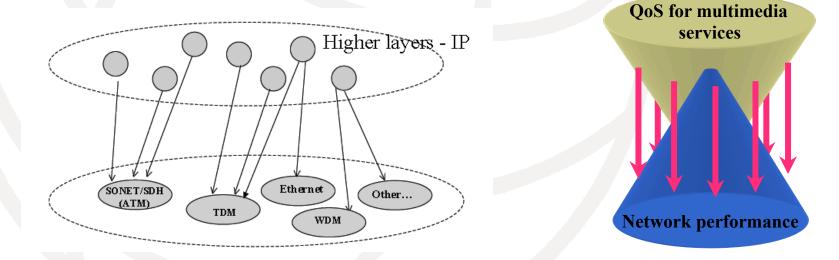
In basic the media perception quality assessment from the end-user is common assessment of MOS (Mean Opinion Score – average of speech intelligibility rating), implemented in accordance with the ITU-T Recommendations

Values of criteria such as connection establishment time and the waiting time of obtaining the acoustic signals depend on the correctness of the signaling protocols that provide services and, therefore, can be estimated by analyzing the delay of signaling protocols messages exchange

MOS definition


The MOS estimation, as described in ITU-T Recommendation P.800, based on a five-point scale – from one (worst voice quality) to five (very good quality). In accordance with this algorithm, a group of people (experts) evaluate the sound quality of test patterns of speech transmitted over a network connection

Typically, the largest score that can be obtained by this method are equal to 4.5. Score of 4.0 points and above is considered as very high, corresponding with the voice quality which common use on traditional phone networks.


MOS/R-factor correspondence

R Value	MOS CQEN Value	Categories of User Satisfaction
94	4,42	
93	4,40	
92	4,38	Very satisfied (Best)
91	4,36	
90	4,34	
87	4,195	
85	4,18	
82	4,09	
81	4,06	Satisfied (High)
80	4,03	
77	3,85	
73	3,74	
70	3,60	Some users dissatisfied (Medium)
68	3,50	
60	3,10	Many users dissatisfied (Low)
50	2,58	Nearly all users dissatisfied (Poor)
MOS = 1 + (0,035) × R + (000 007) × R (R - 60) (100 - R)		
NOTE 1: Connections with R-values below 50 are not recommended.		
NOTE 2: Although the trend in transmission planning is to use R-values, equations to		
convert R-values into other metrics e.g. MOS, % GoB, % PoW, can be		
found in ITU-T Recommendation G.107.		

The problems with establishing correspondence between the subjective and objective assessments

The problem of vertical transparency (mapping) parameters and it values

ITU-T Recommendation on QoS support E-series

Checking the quality of international telephone service: ITU-T Recommendations E.420, E.421, E.422, E.427, E.428, E.430, E. 431, E.432, E.437, E.440, E.450, E.451, E.453, E.470

Terms and definitions related to quality of services: ITU-T **Recommendations E.800, E.801, E.802**

Models for telecommunication services: ITU-T Recommendations E.810, E.820, E.830

QoS parameters, associated with communication services: ITU-T **Recommendations E.845, E.846, E.850, E.855**

Using QoS parameters for the planning of communication networks: ITU-T Recommendations E.860, E.861, E.862

Data collection and quality assessment of the functioning of the equipment, networks and services: ITU-T Recommendations E. 880 19

ITU-T Recommendation on QoS support G-series

General Guidelines for quality of transmission (for international telephone connection): ITU-T Recommendations G.100, G.100.1, G. 107, G.108, G.108.1, G109, G.101, G.111, G.114, G.116, G.131

Services quality and technical characteristics - common and associated with the user aspects: ITU-T Recommendations G.1000, G.1010, G. 1020, G.1030, G.1040, G.1050

General characteristics of the transmission medium: ITU-T Recommendations G.602

Digital Transmission Systems: ITU-T Recommendations G.711 Annex I, G.728 Annex II

Quality and availability parameters: ITU-T Recommendations G.821-G. 829

Digital Linear Systems: ITU-T Recommendations G.911

ITU-T Recommendation on QoS support M-series

Introduction and general principles of maintenance and maintenance organization: ITU-T Recommendations M.34, M. 160, M.495

International telephone lines: ITU-T Recommendations M. 560, M.721

International leased circuits: ITU-T Recommendations M. 1016, M.1020, M.1025

International data transmission systems: ITU-T Recommendations M.1030, M.1040, M.1340

International transport network: ITU-T Recommendations M. 2100, M.2101, M.2101.1, M.2201

ISDN networks: ITU-T Recommendations M.3650

ITU-T Recommendation on QoS support O-series

Measurement parameters of analog transmission systems: ITU-T Recommendations 0.42, 0.61, 0.62, 0. 71, 0.81, 0.82, 0.91, 0.95, 0.111, 0.131

Measurement equipment parameters of digital transmission systems and the parameters of the analog / digital transmission systems: ITU-T Recommendations 0.132, 0.133, 0.151, 0.152, 0.171, 0. 172, 0.181, 0.191 ITU-T Recommendation on QoS support P-series

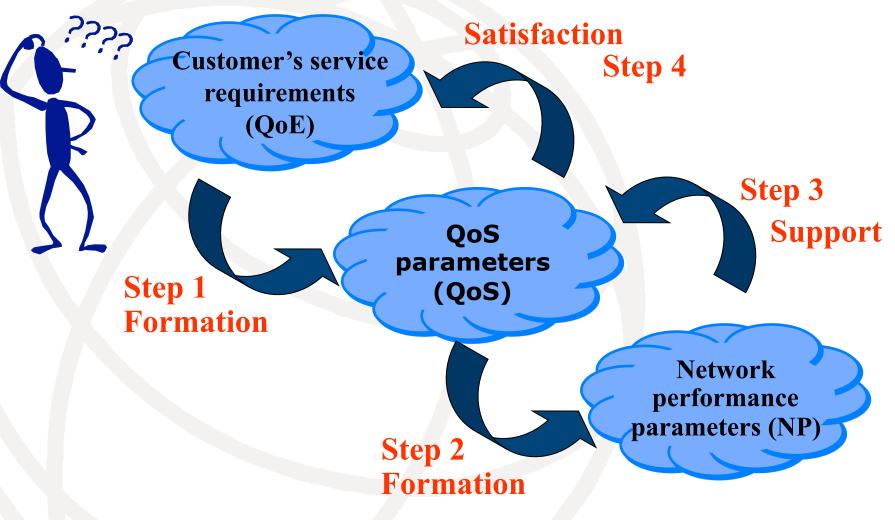
Dictionary (terminology): ITU-T Recommendations P.10

The methods of objective and subjective quality assessment: ITU-T Recommendations P.82, P.85, P.800, P.800.1, P.830, P.831-834, P.862, P.863

Audiovisual quality in multimedia services: ITU-T Recommendations P.910, P.911

ITU-T Recommendation on QoS support X/Y-series

ITU-T X-series Recommendations, those relating to QoS and NP, divide to the following categories:


- Network aspects: ITU-T Recommendations X.134-X.140 [137-143], X.144-146 [144-146];
- QoS: ITU-T Recommendations X.641-642 [147-148].

ITU-T Y-series Recommendations, those relating to QoS and NP, divide to the following categories: Problems of Internet Protocol (IP):

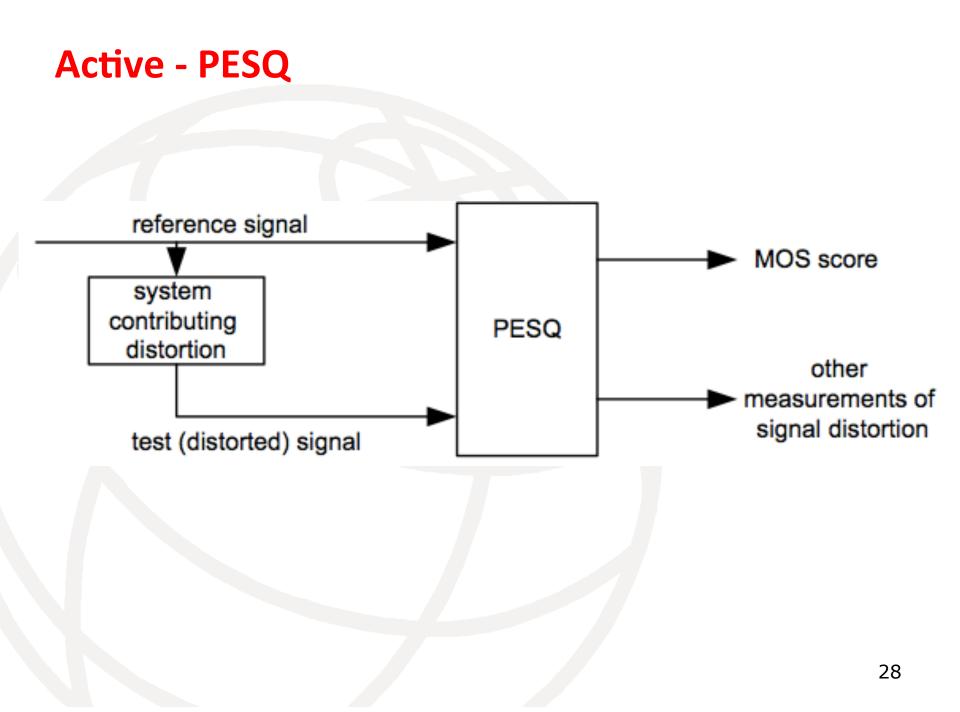
- Architecture, access, networking opportunities and administrative management of resources: ITU-T Recommendations Y.1221 [149], Y.1291 [150];
- QoS and NP transmission quality of user information: ITU-T Recommendations Y.1530 [151], Y.1540 [13], Y. 1541 [152], Y.1542 [153], Y.1561 [154].

Next generation networks (NGN) – QoS and NP.

The Approach of QoS/QoE/NP support

The typical approach of QoS estimation and common problems

At the moment the three basic approach are widely used for estimation quality of distributed mediainformation contents on the exist operators networks (Rec. ITU-T G.1011):

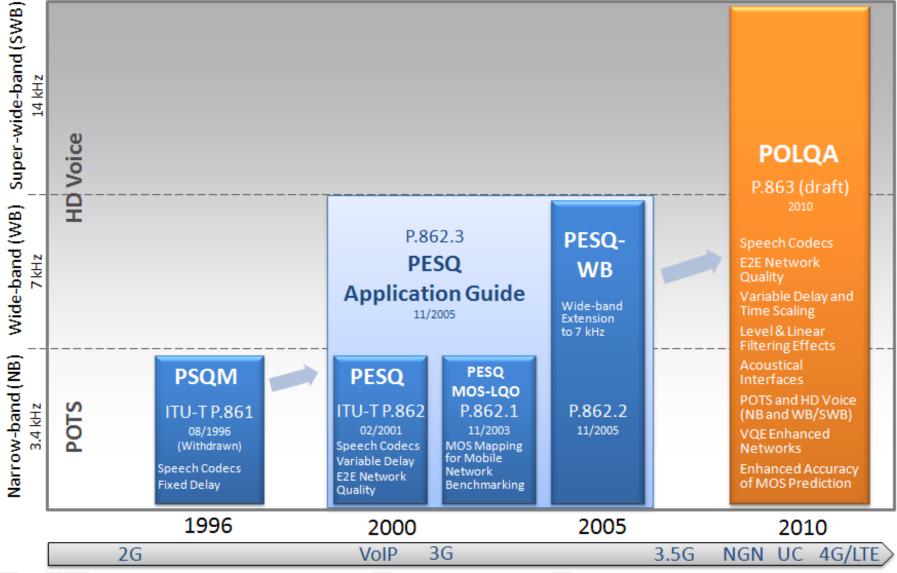

- active (intrusive, PESQ, POLQA)
- passive (non-intrusive, P.563)
- modeling (E-model)

Active - PESQ

PESQ (Perceptual Evaluation of Speech Quality) – the estimation on voice transfer quality

The PESQ is objective specification on parameters quality determination in telephonic networks, which give the forecast of the expected results of subjective estimation from experts

For determination of voice quality transfer PESQ include approach of comparing etalon signal (reference) with degraded signal on the outside point

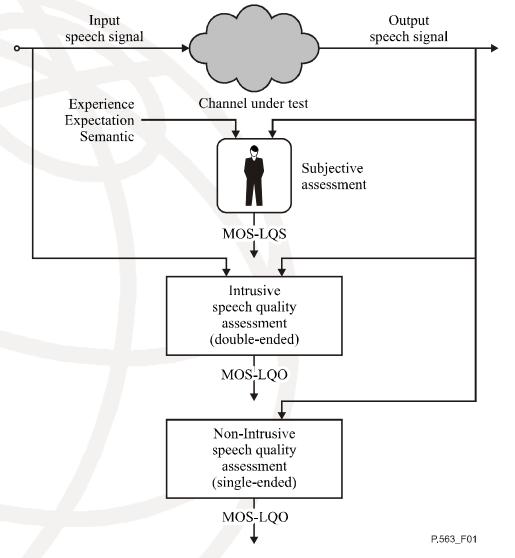

The Future of PESQ - POLQA

POLQA (Perceptual Objective Listening Quality Assessment) – objective of appear voice quality (Rec. ITU-T P.863)

POLQA is technology for estimation voice quality next generation for fix, mobile and IP-networks

POLQA could be used for 3G, 4G/LTE and also for estimation HD voice/video

POLQA



Passive (Rec. ITU-T P.563)

In principal the passive method include estimation of degraded without comparing with etalon signal (reference) (Rec. ITU-T P.563)

II.II.A. Active and passive comparison

Correlation rate between MOS on P.563 and real expert estimation varied form 0,85 till 0,9

E-model

The Modeling method based on E-model algorithm (Rec. ITU-T G.107).

This approach initially created with purpose of network designing simplify for NGN and suppose to calculate of call sessions quality on mathematics methodology under initial data of network characteristics

Sometimes the measurement equipment vendors updated E-model and used it for passive monitoring

Methods implementation

On the exist operators network these approaches are used for following tasks

- for network designing E-model
- for testing network sites (segment) before providing it for operation mode – active (PESQ, POLQA)
 - for monitoring exist networks all these approaches

The common problems

Active (intrusive, PESQ, POLQA) the auxiliary test service traffic QoS estimation on the exist network does not give the objective situation on speech quality on the hole network

Passive (non-intrusive, P.563) Comparison with the standardized model of the traffic/service (the various services and their profiles complicates process of control – model standardization is required)

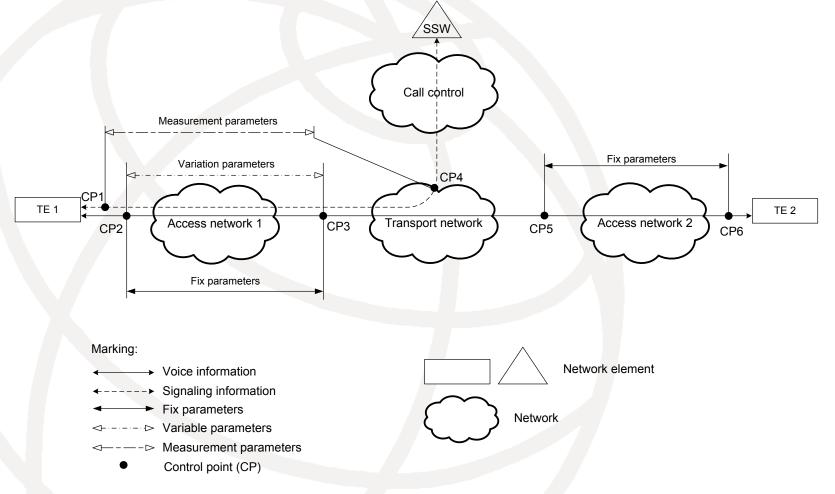
E-model

The mathematical model having a divergence with real technical telecom solutions, applied on an operator network

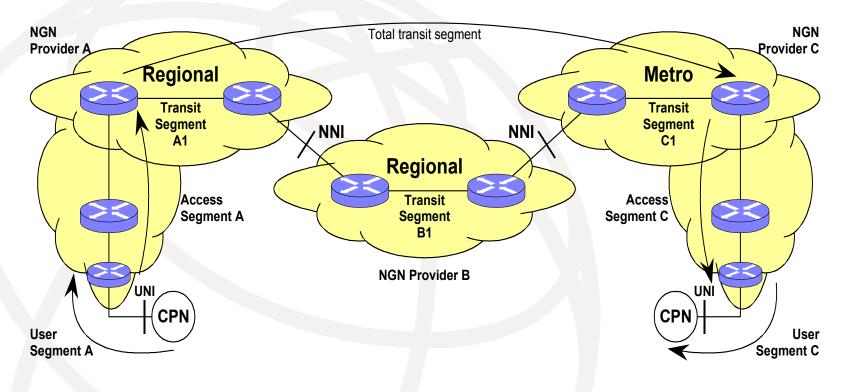
Necessary to create alternative integrated systems for managing network resources to ensure quality of service during the transformation to NGN and under implementation concept "All over IP" *

*The paper. Electrosvyaz Russia, 2009. V.Shalaginov and D.Andreev Resource admission control for ensure the quality of ICT services in NGN networks

Modeling and services benchmarking


There is only one light source that illuminates my way – it's the light of experience I know only one way to judge the future – it's based on the past

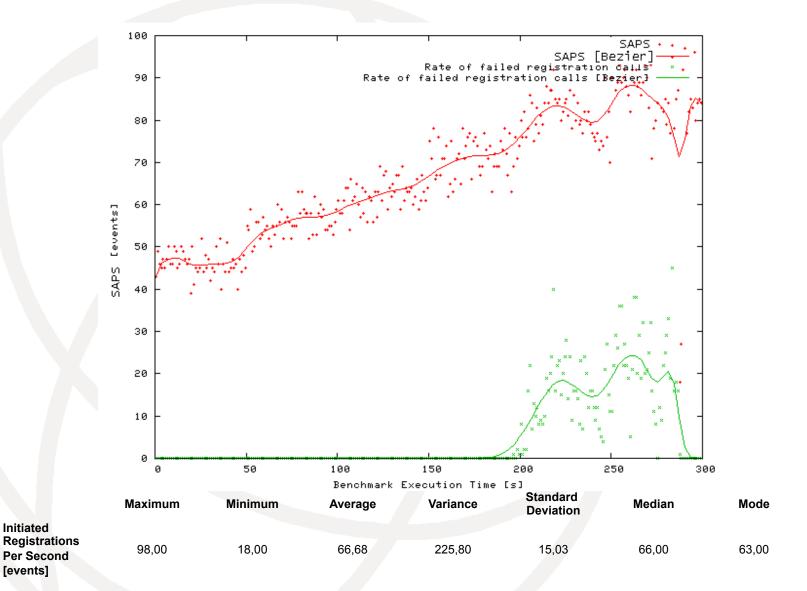
Patrick Henry Pearse. Irish playwright, poet


INNOVATION APPROACH ON ESTIMATION AND QoS/QoE/NP MONITORING

- Measurement and finding the limit values for Network performance and network productivity for each network segment for distributing service sessions (Model network – common instrument for this task)
- Implementation probes on real networks which can simulate services like distributed on exist operators network and which can monitoring/ control quality of service

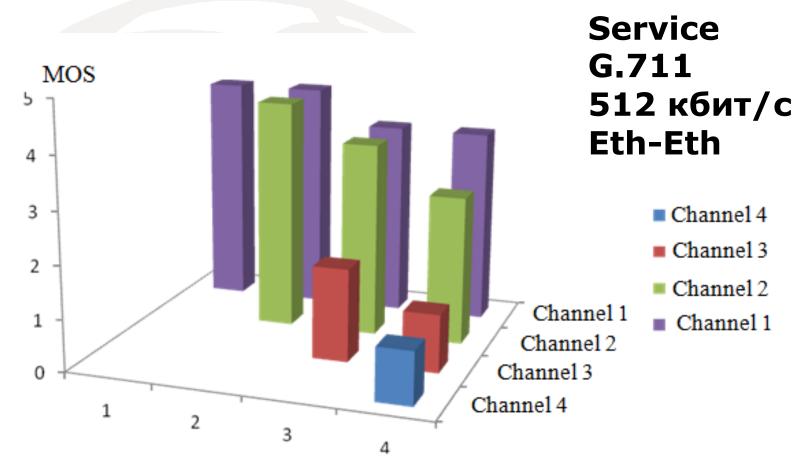
THE ARCHITECTURE OF MODEL NETWORK FOR NETWORK PERFORMANCE, QoS, QoE AND LIMIT VALUES OF NETWORK PRODUCTIVITY TESTING

The etalon Model network provided by ETSI TR 102 717 V1.1.1


- ✓ User segment A/C
- ✓ UNI A/C sending/receiving side
- ✓ Access segment A/C
- ✓ Segment-connection Point
- ✓ Total transit segment

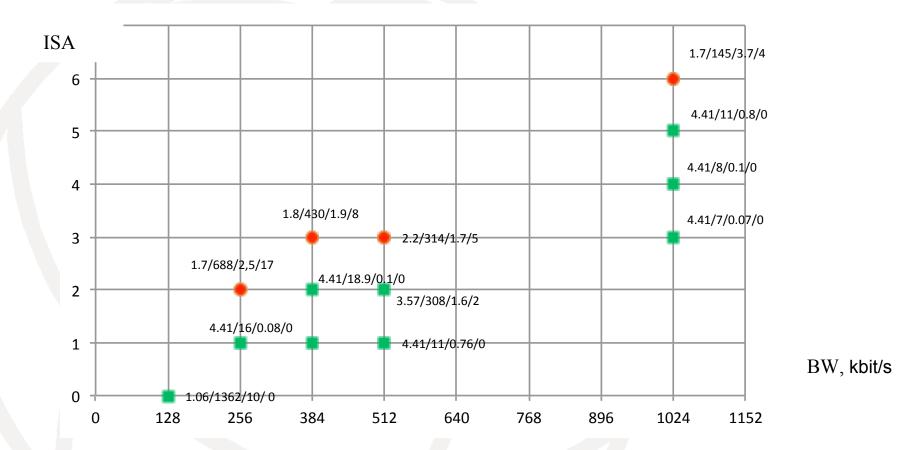
The results of ETSI benchmarking

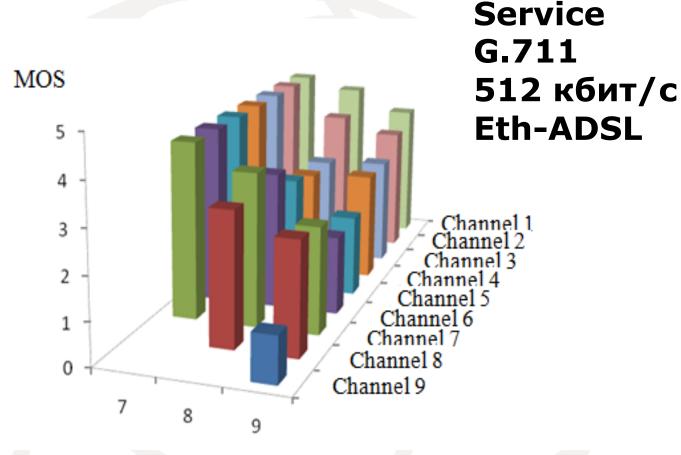
End-to-End delay in ms and R value between DSL line 128 kbit/s uplink; 128 kbit/s downlink PSTN/ISDN to PSTN/ISDN are provided with G.711, DSL Access with G.729A with wired terminals


	PSTN/ISDN Delay (ms)/R	DSL Delay (ms)/R
PSTN/ISDN	68 ms / R=91 (20 ms Packet size) 48 ms / R=92 (10 ms Packet size)	102 ms - 144 ms / R=79 (20 ms Packet size) (le = 11)
DSL	108 ms - 153 ms / R=79 (20 ms Packet size) (Ie = 11)	160 ms - 207 ms / R=74 (20 ms Packet size) (le = 11)

The results of ETSI benchmarking

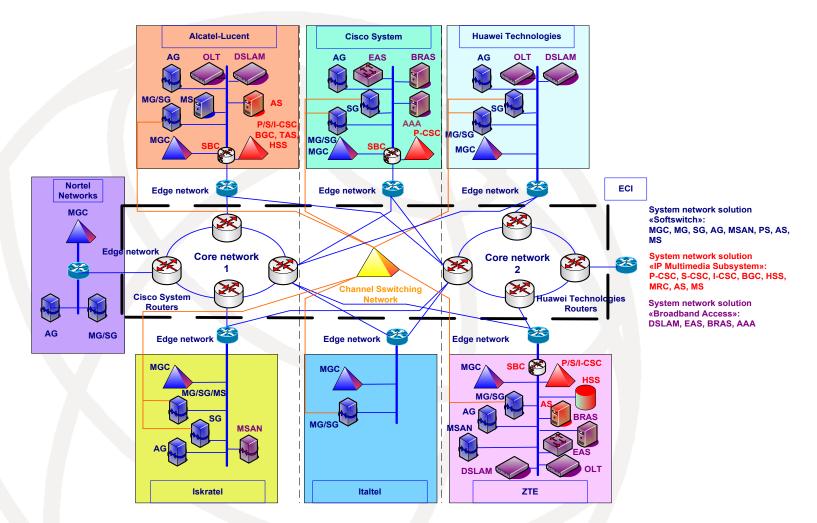
42


The results of testing under innovation approach (joint project ITU-ZNIIS CIS-08)


MOS distribution channels at a value of bandwidth 512 kbit/s

LNCS. Springer 2011 "The approach of network performance and network productivity parameters on QoS estimation and it impairment. Service Benchmarking." Denis.Andreev, Konstantin.Savin, Victor.Shalaginov, Viya.Zharikova, Sergey.Ilin

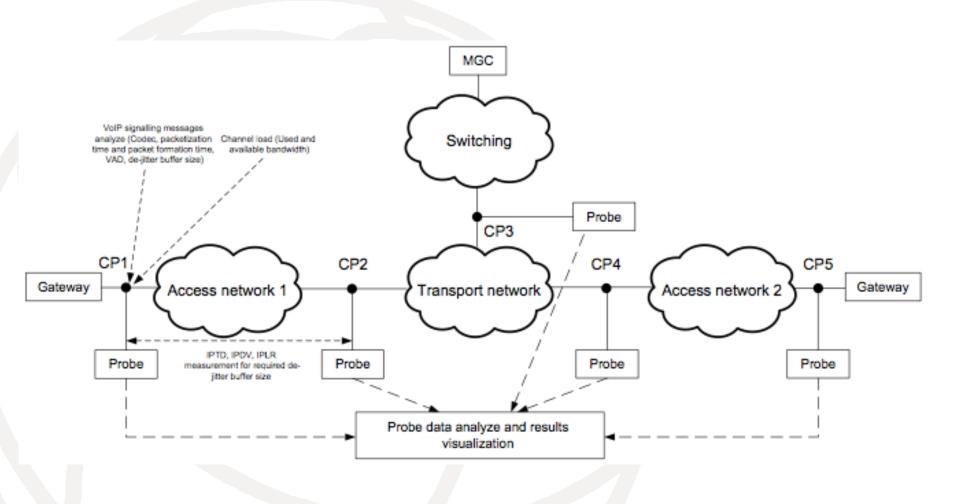
The results of testing under innovation approach (joint project ITU-ZNIIS CIS-08)



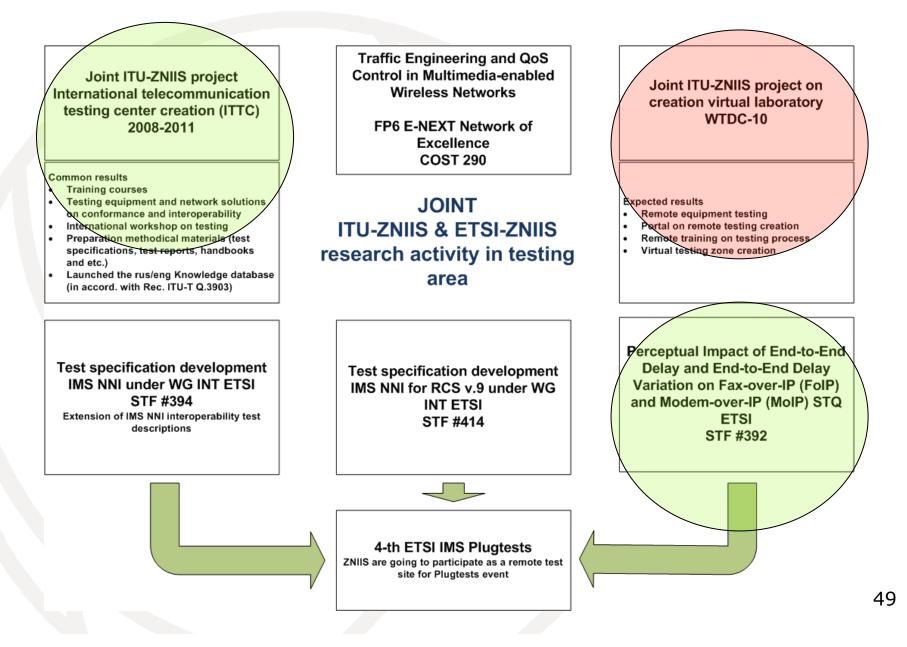
The results of testing under innovation approach (joint project ITU-ZNIIS CIS-08)

- Channel 9
- Channel 8
- Channel 7
- Channel 6
- Channel 5
- Channel 4
- Channel 3
- Channel 2
- Channel 1

ZNIIS Technopark Model network



Rec. ITU-T Q.3900 Methods of testing and model network architecture for NGN technical means testing as applied to public telecommunication networks


The typical approach on estimation QoS/QoE/NP by operators

- The QoS/NP norms on the network segment determination for different telecom technologies and services
- Service modeling with determination QoE model (etalon model of service)
- Benchmarking services and networks
- Interoperability testing
- ✓ Testing on RFP conformance
- Determination of optimal functionality of QoS support system before implementation on network
- Realization the special QoS/QoE/NP monitoring system based on the service emulation method

The common approach on QoS/QoE/NP monitoring (joint project ITU-ZNIIS CIS-08)

The Russia key results in International project in QoS area

Conclusions

The QoS/QoE/NP testing are begun one of the central topic for research by International standardization organizations (ITU, ETSI)

The previous mechanism which was standardized based on subjective and mathematical estimation which contradict with expected QoS

The innovation approach of QoS/QoE/NP testing have to be realized on the real networks

ITU has to provide help for developing countries on testing/monitoring QoS/QoE/NP

Denis Andreev

Director of Technopark ZNIIS, Rapporteur of Q.10/11 SG11 ITU-T

тел: +7-495-368-8745 Tel: +7-495-368-8745 mobile: +7-495-647-9603 Fax: +7-495-368-9105 skype: davwilly77 sipnet: <u>2811971@sipnet.ru</u> E-mail: <u>andreevd@zniis.ru</u> cc: <u>andreevd@ties.itu.int</u>

Russia, 111141, Moscow, 1-st Proezd Perova polya, 8

