

ENUM Issues and Solutions

Telecommunication Development Bureau 2nd Annual global symposium for regulators December 2001

Houlin Zhao
Director
Telecommunication Standardization Bureau
International Telecommunication Union

Why is this topic important for regulators?

- Mapping of telephone numbers onto Internet.
- Could allow conventional telephones to call IP terminals (PCs).
- Should telephone numbers used in this way be subject to government oversight and regulation?
- Who should exercise control over telephone numbers used in this way?

Caveats

- Complex topic
- Focused on E.164 infrastructure and policy issues, not ENUM services
- Work in progress

What is E.164?

- ITU-T Recommendation E.164: "The international public telecommunication numbering plan"
 - Linked to treaty obligations (specific roles and obligations defined for ITU Member States and TSB Director)
 - Defines number structure and functionality for three principal categories of numbers:
 - Geographic Areas (including country codes)
 - Global Services
 - Networks

Types of E.164 Resources

- Geographic areas
 - ITU Member States, including integrated numbering plan involving more than one (e.g., +1)
- Global Services
 - e.g., UIFN Freephone Numbers (+800)
- Networks
 - Global Mobile Systems (+881 + 1 digit IC)
 - Shared code for Networks (+ 882 + 2 digit IC)
- Groups of Countries
 - e.g., ETNS

Issues of Convergence

- Problems of addressing calls that pass from one network service to another:
 - Now widely possible to originate calls from IP address-based networks to other networks
 - But uncommon to terminate calls from other networks to IP address-based networks
 - To access a subscriber on an IP address-based network, some sort of global addressing scheme across PSTN and IP address-based networks needed
- ENUM may be solution...

What is ENUM?

- IETF protocol defined in RFC 2916
- E.164 number can be used to look up a Uniform Resource Identifier (URI)
 - Web addresses most commonly known URIs
- Allows using E.164 number for combined PSTN & IP applications, such as email, fax, SIP, mobility, etc.
- Could be important integrator of telephony network, Internet, other IP-based networks

What is ENUM?

- Protocol uses what are called Naming Authority Pointer ("NAPTR") DNS resource records as defined in RFC 2915
- Identifies the available methods or services for contacting a specific node identified through an E.164 number and their order of priority/preference:
 - e.g., contact me first by email then voice mail...

How would E.164 numbers be mapped into the DNS?

- Reverse map digits in an E.164 number into separate DNS "names"
- Concatenate with "ENUM root zone" (as an example, foo.tld)
- For example:
 - +33 1 40 20 51 51 = 1.5.1.5.0.2.0.4.1.3.3.E164.TLD
- TLD stands for a domain name that has not yet been formally agreed ("arpa" has been suggested)

Some Complexities

- In telecommunication numbering, regulatory tradition with strong government involvement (e.g., number portability,consumer protection)
- In the Internet, management of naming and addressing has been left to "industry selfregulation"
- National numbering/regulatory authorities involved in coordinating ENUM servers & services for their portion of E.164 resources in respective countries

Roles and Responsibilities

- Most ENUM service and administrative decisions are national issues under purview of ITU Member States, since most E.164 resources are utilized nationally
- ITU will need to ensure that Member State has specifically authorized inclusion of geographic country code in the DNS
- In integrated numbering plan, each ITU Member State within plan may administer their portion of E.164 resources mapped into DNS as they see fit

ITU Responsibilities

- Define and implement administrative procedures that coordinate delegations of E.164 numbering resources into the agreed DNS name servers
 - ➤ Draft Recommendation E.A-ENUM is being prepared by Study Group 2 for presentation to the May SG2 meeting

Security Issues

- Almost no security in normal DNS
- Transaction Signatures (TSIG) provides simple form of DNS Security based on shared secret
- Ultimately DNSSEC needs to be deployed
 - uses public key encryption to generate digital signatures for every resource record in a zone
 - public keys are also signed and included in the zone, allowing the signatures to be validated

National Consideration Issues

- Consultation process with interested communities
- National deployment Issues
 - How do you authenticate the identity of the subscriber for ENUM services?
 - Who are ENUM Registrars and what are they responsible for?
 - How do you validate ENUM data for potential users (Add - Modify – Delete) NAPTR list of services and preferences?
 - How is data provisioned in the country code name servers?

Privacy Issues

- Need to obtain end-user agreement to enter number in DNS, depending on national data-protection laws
- Hardening the ENUM zone data against data mining, especially for the purposes of spam?
- But hard to stop ENUM name servers being harvested for resources bound to an E.164 number

ITU Past Activities

- Preparation of tutorial papers
- ITU-T SG 2 preparing supplement on issues that need to be addressed by national and international authorities
- ITU-T SG 2 Meeting in Sept 2001
- Discussion with IETF on roles and responsibilities

ITU Future Activities

- ENUM Tutorial Workshop, 8 February, Geneva
- Wide circulation of tutorial material
- Cooperate with IAB/IETF to make final choice of TLD, registry, requirements for registry operations
- Rapporteur meeting 4-8 February 2002
- Determine ENUM Supplement in May 2002
- Determine E.A-ENUM, May 2002?