

International Telecommunication Union International Multimedia Telecommunications Consortium

DVB-IP Standardisation

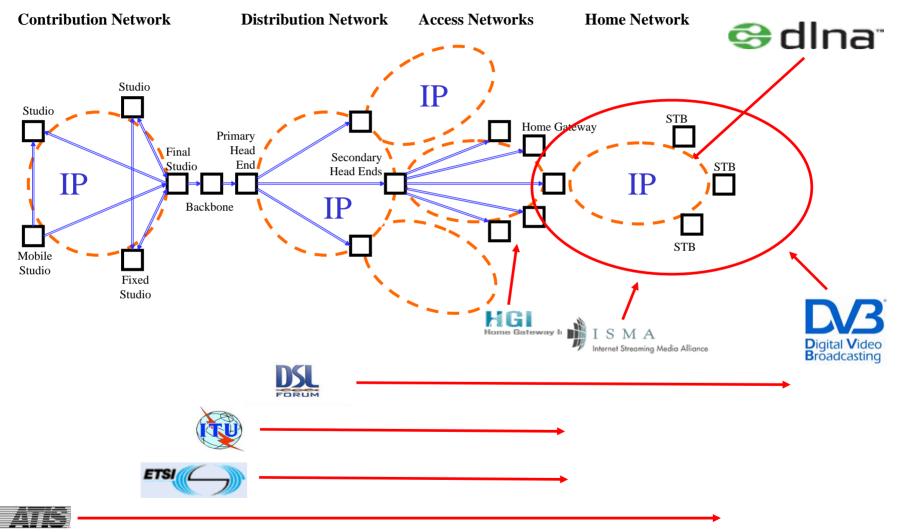
Ralf Schäfer
Thomson
Chair DVB CM-IPTV

Agenda

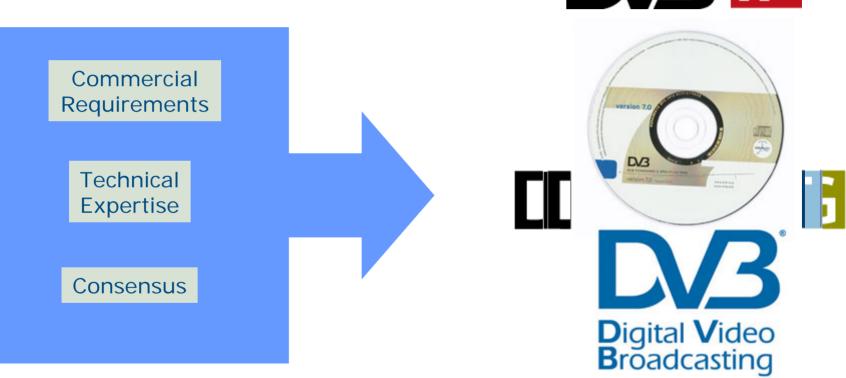
- Why and what should be standardized for IPTV
- Activity of the various standardization bodies in relation with IPTV
- The DVB consortium and IPTV
- o DVB-TM: Setting the specifications for DVB-IP
 - What is in ETSI TS 102 034 ?
 - What is in the coming release?
 - Preparation of MHP-IPTV
- DVB-CM: Setting the business case for DVB-IP
- o Conclusion

Why and what should be standardized for IPTV

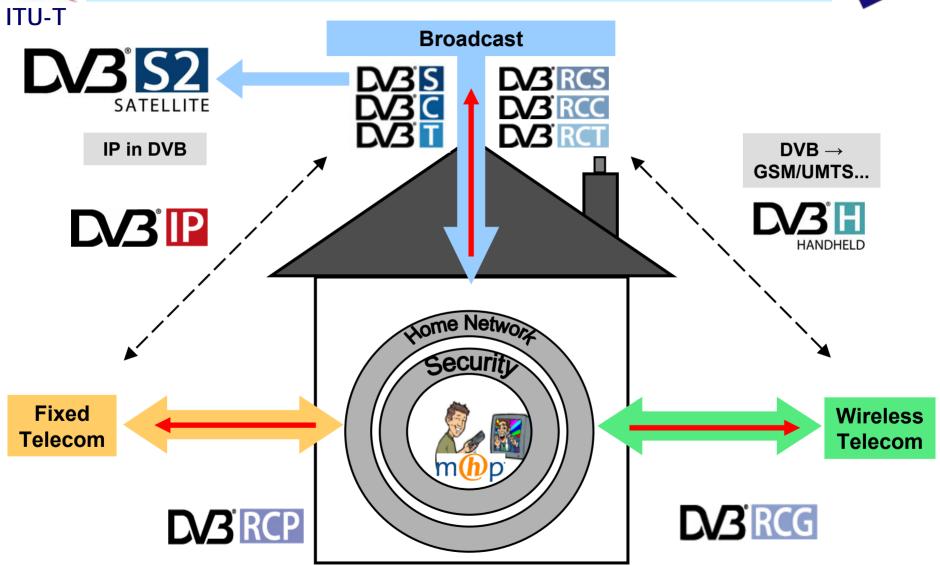
Why standardization for IPTV


- Achieve interoperability
- Give confidence for investment
- Avoid confusion in the market
- Lower costs for everybody
- What should be standardized
 - Layers in STB (protocols, data structures, application runtime,
 ...)
 - Parts of Home Network and Home Gateway
 - Parts of the End-to-end system
 QoS, ...
- However: Leave sufficient space for differentiation, according to market requirements

Activity of the various standardization bodies in relation with IPTV

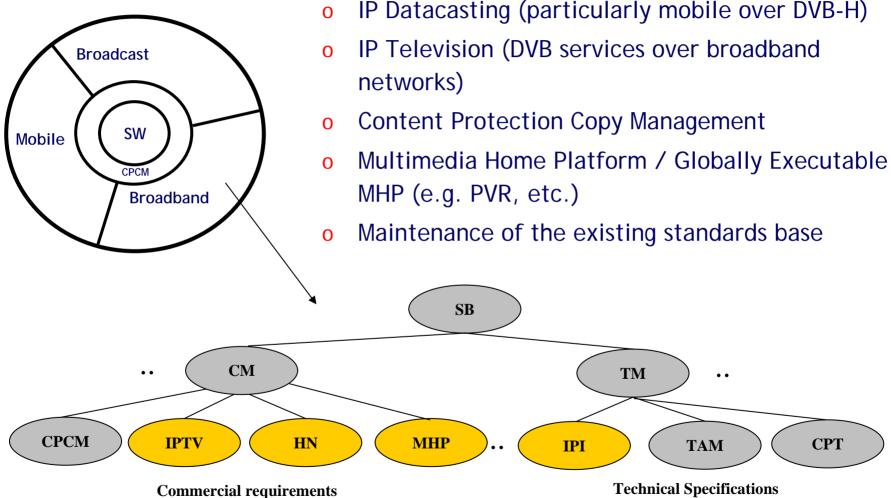


How does the DVB project work?



DVB produced 44 standards since 1993

DVB phases – The Complete Picture

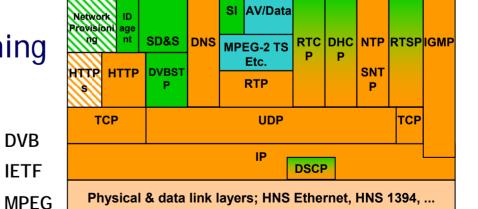


DVB's Video over IP initiatives

DVB-IP first release: Available now!

Digital Video Broadcasting (DVB); Transport of MPEG-2 Based DVB Services over IP Based Networks

Intellectual Property Rights 1 Foreword ាំ1 Scope 12 References 5 Service Discovery 16 RTSP Client 7 Transport of MPEG-2 TS 18 IP Address Allocation & Network Time Services ☐ 9 Identification Agent for the Transport of DVB Services over IP based Networks 10 Network Provisioning (Optional) · 11 Ethernet Home Network Segment ... ☐ 12 IEEE 1394 Home Network Segment Annex A (informative): MPEG2 Timing Reconstruction Annex B (informative): SD&S Data Model ⊞... Annex C (normative): Schemas Annex D (informative): Bibliography History



Philosophy of DVB-IP Phase 1

ITU-T

- Keep as much as possible from existing DTV standards
- Reuse existing IP specifications where possible
- Focus on data & protocols
 - Infrastructure layer is independent of high level **Applications**
- o Well known technologies:
 - XML, IP protocols (IETF, ...)
- Optional Network Provisioning
 - Configuration
 - Notification of changes
 - **HNED*** inventory

Service offering

DVB

IFTF

^{*} Home Network End Device

Service Discovery and Selection (SD&S)

- o The SD&S specification covers:
 - Service (and Provider) discovery
 - Service selection
 - Transport of the Discovery information (push and pull modes)
- o Service discovery results in:
 - A list of available providers and services, with sufficient information to make a choice/select (user) and to enable access (system)
- Two types of Live Media Broadcast
 - TS full SI: DVB-SI embedded in the transport stream
 - TS optional SI: Only PSI must be embedded in the transport stream
- Service discovery information represented with and carried as XML records
- XML schemas specified in a normative file

Service Selection

o Live Media Broadcast services:

- Data sent to a multicast group is only forwarded to receivers which explicitly joined the multicast group using the Internet Group Management Protocol (IGMP, RFC 3376)
- DVB-IP supports IGMPv3
 - introduces source specific multicast (SSM) to optimise IP multicast network load
 - enables routers to filter on specific source addresses of senders of multicast groups.
- Optionally RTSP may be used

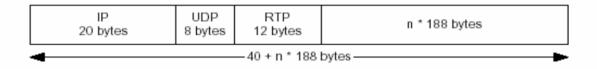
o Content on Demand services:

- Delivered over IP unicast
- Accessed via RTSP, DVB-IP profile specified

RTSP client (1)

- Application-level IETF session protocol to control delivery of data with real-time properties
- o Why a DVB client?
 - Because RTSP (RFC2623) is quite complex and huge
 - It is not necessary to implement it all for the DVB service profiles
 - Current RTSP implementations have proprietary extensions to make systems work
- o The specification defines minimal subsets for each profile:
 - Guarantee interoperability among DVB HNEDs
 - Reduce testing effort

RTSP client (2)


- Subsets for three DVB-IP profiles:
 - Live Media Broadcast
 - Live Media Broadcast with trick modes (pause, fast forward, ...)
 - On Demand delivery of audio and video (user initiated + trick modes)
- DVB-specific usage of RTSP methods
 - Announce, Describe, Get_Parameter, Setup
- Methods specified for Unicast and multicast
 - Methods in tables, differences with IETF usage clearly marked

Delivery of DVB-MPEG-2 based services

- Based on IETF protocols
- MPEG2 TS encapsulated in RTP/UDP/IP according to RFC 3550 and RFC2250

- Delivery Control Protocol: RTCP associated with RTP for sending information on transmission statistics
 - No reports to be sent by receivers, in view of scalability
 - Sender reports used to accurately synchronize independent TSs
- o Network requirements and QoS
 - Defines key quality of experience guidelines e.g. jitter and multicast join timings
 - Defines Quality of Service markings to allow prioritization of IPTV carriage

Release in Q1/2006: BCG Generic

BCG Definition

- The term Broadband Content Guide (BCG) refers to a Content Guide that is delivered over an always-on bi-directional IP network
- However, it can be used to describe content that is delivered over any network (e.g. IP, DVB-S, DVB-T...)
- o BCG data model:
 - Based on TV-Anytime XML Schema (ETSI TS 102 822)
- BCG encapsulation:
 - All BCG data is segmented and carried inside Data Delivery Units
 - A Data Delivery Unit is composed of a compression wrapper and a BCG data structure
- o BCG transport:
 - Uses existing DVB-IP transport for SD&S, i.e.
 - DVBSTP for push mode
 - HTTP for pull mode
 - Defines an optional query mechanism for BCG metadata acquisition, based on TV Anytime part 6-1, i.e. SOAP over HTTP

Release in Q1/2006: BCG Metadata

- o Describes content, including:
 - Programme Information (title, synopsis, genre, keywords, cast...)
 - Service Information (name, genre, description, URL...)
 - Schedules (time, date, channel, reruns, free/encrypted...)
 - Purchase Information (price, currency, link to a price server...)
 - Segmentation Information (chapters of a movie, highlights of a sports event...)
 - Program Reviews, Credits Information...
- o Compliant with the TV-Anytime XML schema
- Indexes may be transmitted to accelerate access to metadata
- o BiM-encoded

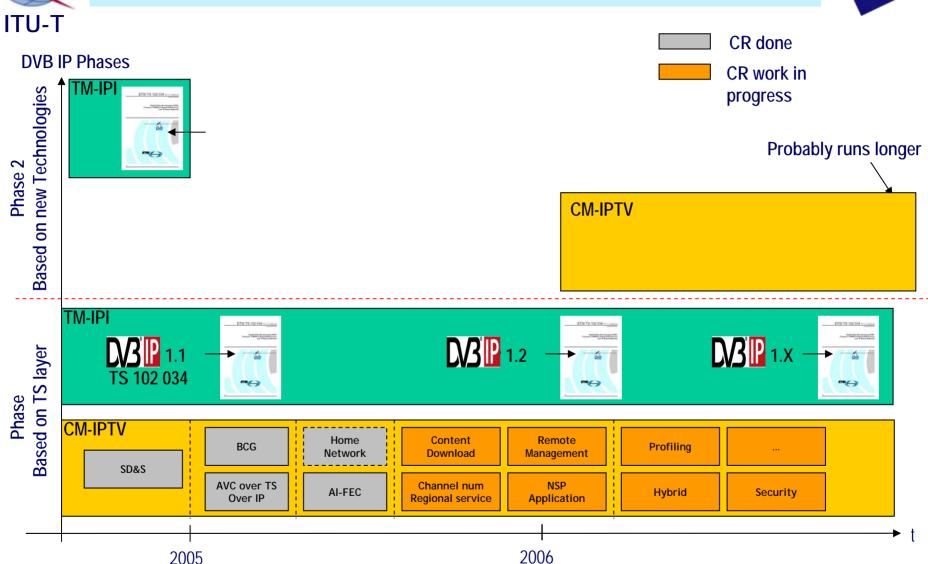
Other technical matters

- Release in Q1/2006: SD&S extensions (AVC)
 - Signaling of new A/V content formats (e.g. H.264, E-AC3, AC3, AAC, HE-AAC,...)
- o Pending:
 - Signaling of Logical Channel Numbers
 - Signaling of Regional Services (deployment facility for SD&S servers)
 - Application Layer FEC
- o On-going: DVB-Home Network based on DLNA
 - Architecture
 - Mapping with DLNA
 - Identification of DVB complement
 - Content protection using DVB-CPCM

MHP-IPTV

O Commercial Module-MHP

- Released commercial requirements for extending the MHP to IPTV
- These requirements include
 - Hybrid devices supporting both DVB broadcast and DVB-IP devices
 - DVB-IP only devices


Technical Module -TAM/MUG

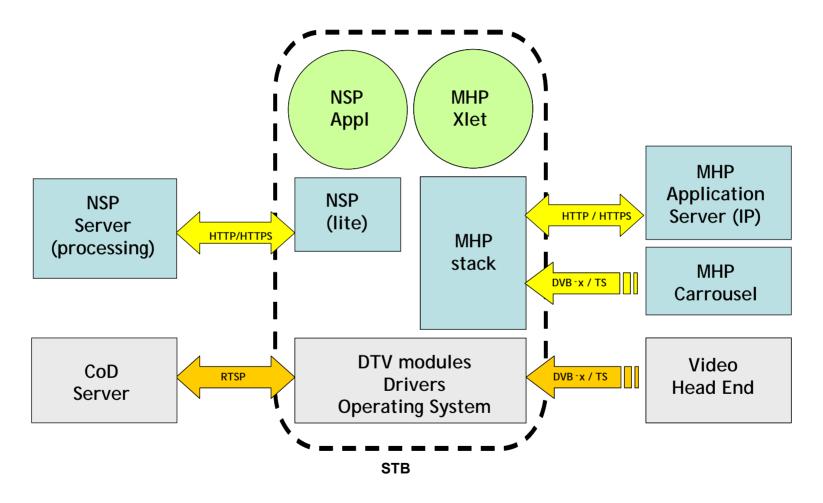
- Defining how to add IPTV to the MHP specification
- Includes notably the connection from the MHP APIs to SD&S and BCG
- Defining a subset of the MHP-IPTV specification to be used by applications for markets which are using IPTV protocols defined by organizations other than DVB or which are not using standardized protocols at all

CM-IPTV / TM-IPI roadmap

Next: DVB - Content Downloading System

- Enable delivery of non real time IPTV services
 - To a local cache over non real-time broadband IP channels
 - Data rate can be variable and even intermittent.
- Targets the downloading
 - DVB A/V formats and modes
 - Pure audio content
 - Metadata
- Both push and pull delivery models are in the scope.
 Multicast and Unicast delivery should be supported.
- The system should be aligned with the DVB BCG specification, based on TV-A metadata format for the description of services.

Next: DVB - Remote Management System



- o Remote management covers the following aspects:
 - Configuration and firmware upgrade (unicast & multicast mechanisms)
 - Device management including alarms
 - Troubleshooting including diagnostics
- RM includes the management of devices on the HN
- Efforts should be made
 - To align with existing standards where possible (e.g. DSL-Forum)
 - To support all kinds of Broadband Networks
 - Support different kinds of Broadband Devices (e.g. Modems, Gateways, STB, ...)
 - To align with RM Systems for other broadband applications e.g. voice etc

Next: Applications in IPTV

In preparation...

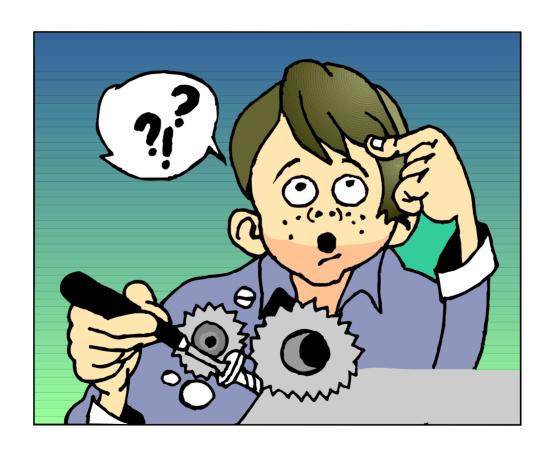
Hybrid IPTV services

 The aim of this task force is to provide use cases and commercial requirements for hybrid TV services (Broadband/Broadcast)

DVB-IP Phase I profiling

- The aim of the profiling task force is to group elementary DVB-IP building blocks to profiles reflecting the deployment needs of IPTV service providers. At least one of the profiles enable the transport of A/V over MPEG-2 TS without the need for an RTP/RTCP layer
- Security (focus on content security in collaboration with CM-SEC)
- DVB-IP Phase II
 - The aim of DVB-IP Phase I was to build an IPTV system widely based on proven technologies from the broadcast world (e.g. TS layer, DVB-SI, ...).
 - The aim of DVB-IP Phase II is to build on new technologies such as direct IP streaming, supporting the convergence of fixed - mobile TV networks, web services, ... (indicative)

Conclusion


ITU-T

- Today there is a rising call for worldwide standardization of IPTV, where DVB was one of the first to start work
- The DVB project builds a complete ecosystem for IPTV complementing existing industry achievements and standards
- Establishing liaisons with the right partners is seen as key in DVB
- DVB-IP's base layer enables IPTV industry players to create competitive differentiated offers while addressing interoperability needs
- Coordination between the different standardisations groups working on IPTV is key

Questions

