

International Telecommunication Union

Wireless and Coax Transport

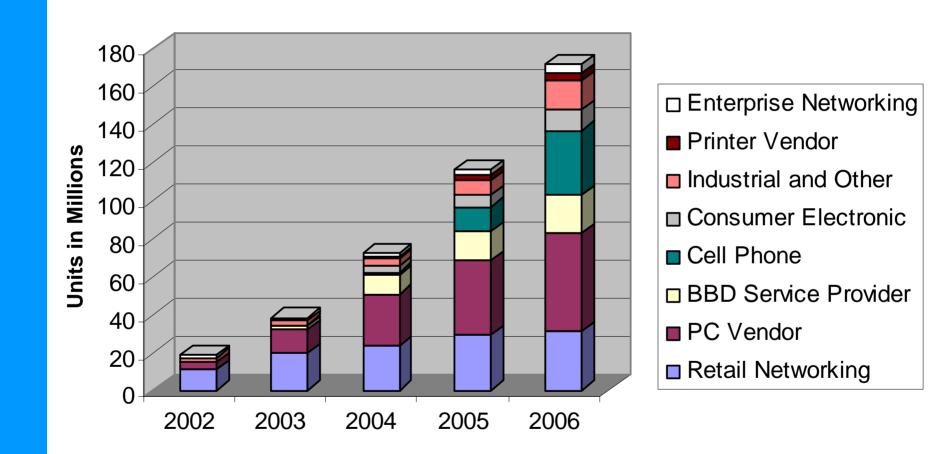
Latest developments in Home Network Transport Technologies

Stephen Palm Ph.D.

Principal Engineer

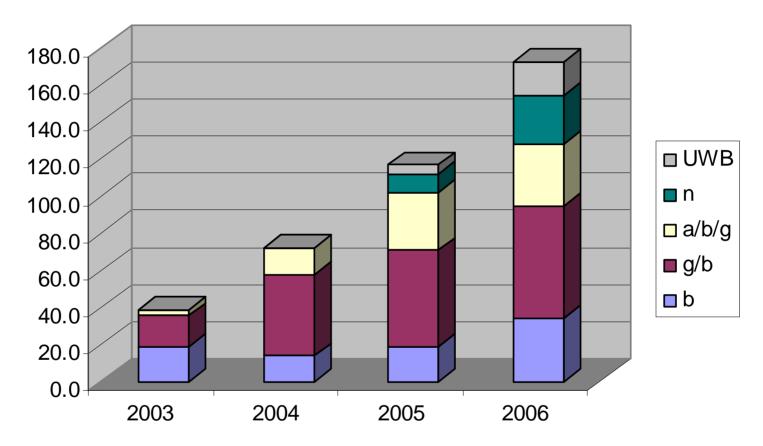
Broadcom

palm @ broadcom . com

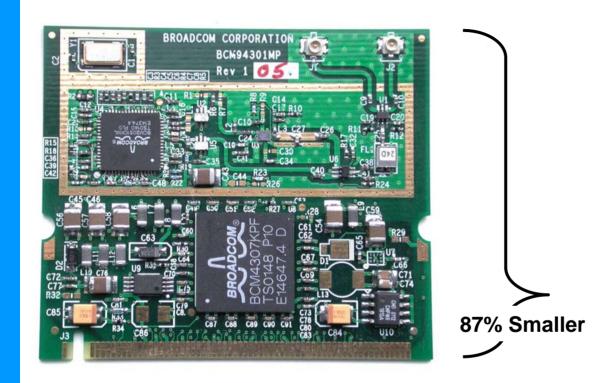


Digital Video Home Needs

- Digital PVR and Streaming Content to multiple TVs
- o Enable whole home
 - One set of content on any TV
 - Distributed from a Home Media Server
- No new wires
 - Coax, Wireless, Power
- o Content to TVs not PC
 - Ethernet, phone wire of limited use
- o Quality of Service
 - Prioritized delivery
- Wireless and Coax deliver high throughput with quality



WLAN Market Growth: Diverse Platforms


WLAN Market by Technology

- 802.11g is new mainstream Wi-Fi
- Next broad technology transition is 802.11n in 2005

Wi-Fi Solutions becoming smaller

50mm x 60mm 1.97in x 2.36in 14.8mm x 26.5mm 0.58in x 1.04in

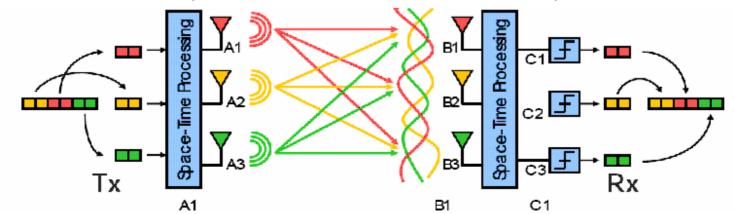
The Pace of IEEE and Wi-Fi Alliance

- Schedule and Timeline is now general public news
- Market needs sometimes outweigh academic completeness
- o The Wi-Fi Alliance (as an industry consortium) has stepped up to accelerate usable standards:
 - 802.11a/b/g → Interoperability certification
 - 802.11i → WPA specification
 - 802.11e → WQoS specification
 - 802.11n → Marketing Requirements Document
- Wi-Fi Alliance has shifted from passively certifying the standard after it was done, to accelerating completion, to now driving the IEEE requirements to initiate a standard

Relevant Standards on the Horizon

- o 802.11 QoS WQoS/WME/802.11e (2004)
 - Priority based Quality of Service
 - Allows Wireless VoIP and video distribution in the home
- o 100 Mbps 802.11 (WLAN) 802.11n (2005)
 - Throughput approximately 3 times 802.11g
 - Compatible way for additional HD video streams in the home
- o 480 Mbps 802.15 (WPAN) 802.15.3a (2006?)
 - Ultra Wide Band (UWB)
- O UPnP(QoS) / DHWG
 - Discover and Control Consumer Electronic equipment

WQoS/WME Status


- oWME Specification / Test Plan complete
- Interoperability proven
- o Wi-Fi Certification begins 1-Sept-2004
- Product support already being announced

• More Details in Session 6

IEEE 802.11n Basics

- o Compatible with 802.11g and 802.11a
- Uses same bands as 802.11g (2.4 GHz) and 802.11a (5 GHz)
- PHY and MAC improvements to achieve 100 Mbps
 MAC throughput
- Higher spectral efficiency
- o Technologies being considered:
 - 20 and 40 MHz bandwidth channels in 5 GHz band
 - MIMO Multiple Transmission (1-4) or Reception (1-4) Antennas

IEEE 802.11n Status

- o Task Group "n" recently formed in IEEE
- Technology Selection Procedure and Channel Model documents completed
- Specific Technology proposals expected from September 2004
- Specification in 2005 or 2006
- o Products in 2005

IEEE 802.15.3a Basics

- 802.15.3a (UWB) is targeted to be a high speed BlueTooth (802.15.3)
- Wireless <u>Personal</u> Area Network (WPAN)
 - Only a few nodes connected together
 - Short range a few meters same room
 - High throughput
 - Typically about 100 Mbps
 - Up to 480 Mbps in short range extended modes

IEEE 802.15.3a Status

- o Group mired in Selection Procedure
- Two camps neither one can achieve75% approval
- Some questions about FCC approval

Coax Home Network Technologies

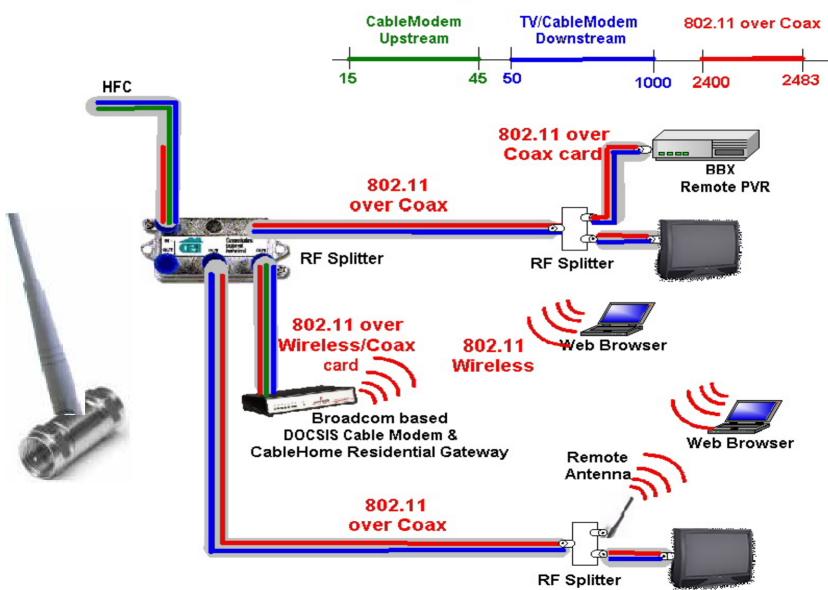
- o IP-based
 - 802.11 over Coax
 - HPNA over Coax
 - MoCA e.g. Entropic, Tiaris

- o Non-IP-based
 - Channel 3/4 Analog RF Modulation
 - Digital Video Over QAM

802.11 over Coax

o Advantages:

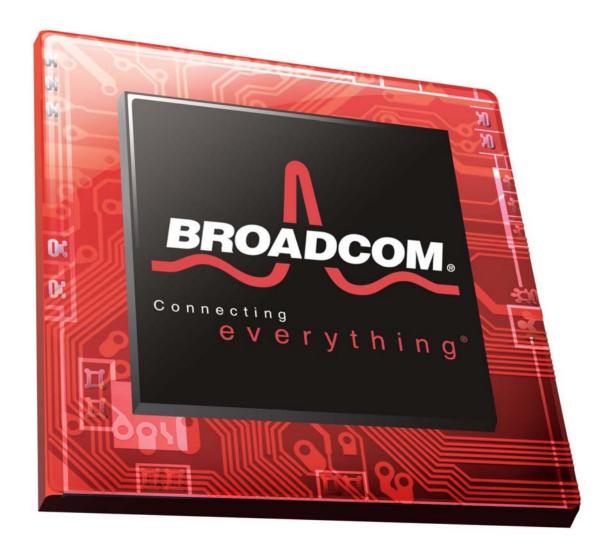
- One interface for both wired and wireless
- Leverage mature 802.11 technology (>50Mu shipped)
- Utilizes existing coax near television
- 802.11 performs better on coax than through walls and other attenuators
- Concurrent use with Cable broadcast signals and DOCSIS (Cable Modem)
- Coax to 802.11 bridge is passive (low cost)


o Challenges:

 802.11a frequencies have to much attenuation for Coax

802.11 over Coax

Spectral Allocation


15

Summary

- Wireless and Coax deliver high throughput with quality
- o No new wires
- o Multiple use
 - Digital Video to multiple TVs
 - Data to PCs , PDAs
- o Quality of Service
 - Prioritized delivery

2004 June 17