

Standardised precabling, the efficient road to secure and reliable home networks

Dr. Walter von Pattay
Secretary of ISO/IEC JTC 1/SC 25

Table of contents

- Reasons for cabling.
- Standardisation: prerogative for successfull precabling.
- Contents of ISO/IEC 15018:
 - Two topologies,
 - Up to four cables,
 - A new connector for balanced cables.
- The standards body for in-house cabling.
- What are the costs for precabling?

Communications media for the home

- Wireless: many methods, also reaching beyond the home.
- o Infrared: the more user, the more co-ordination is needed.
- o Powerline: no new cable, but ...
- o Copper: the main resource for transmission in the home.
- o POF: the medium for homes?

General reasons for communications cables

- Wireless: a scarce resource, to be dedicated to moving targets.
- Infrared: does not penetrate walls.
- Powerline: not apt for many kinds of information.
- Communications cables: secure, safe, reliable.

Specific reasons for communications cables

- Harder to overhear and to influence
 - You need to masquerade a man, not only a wireless message.
- better EMC: oneself and neighbours are not disturbed.
- Easier access control.
- o Reliable transmission.
- Power transfer to end-system.

Cost of precabling versus demand driven cabling

Precabling requires one international standard

- o Precabling only pays off, when the installed today still is the "correct cable", tomorrow & available at the right place.
- o Application equipment is sold worldwide and needs to find the same transmission performance anywhere in the world.
- o Homes are tailored to the user and his environment and still need to support all applications the inhabitant wants.

dates dates dates date and the second of the second of

Intelligent Home: 3 times the effect of network externalties

Application 1, Application 2, . . . Application n

Stable Interface

Endsystem 1, Endsystem 2, . . . Endsystem n

Stable Interface

Network 1, (Network 2, Network 3)

Planning confidence and offering of product/services increase market growth

Applications

ISO/IEC 11801: used world wide

Cabling and applications have different life cycles

Some cabling standards for offices

EN 50173

2003-01 2nd Edition Information Technology - Generic cabling systems Informationstechnik - Anwendungsneutrale Verkabelungssysteme

Technologies de l'information - Systèmes génériques de câblage

EIA / TIA 568 (B)

Commertial building telecommunications cabling standard

ISO / IEC 11801
2002-09 2nd Edition
Generic cabling
for customer premises

ISO/IEC 11801: Channel classes

- Permanent link/channel Klasse A up to 100 kHz
- Permanent link/channel class B up to 1 MHz
- Permanent link/channel class C up to 16 MHz
- Permanent link/channel class D up to 100 MHz
- Permanent link/channel class E up to 250 MHz
- Permanent link/channel class F up to 600 MHz
- Optical Fibre Class OF-300 up to 300 m
- Optical Fibre Class OF-500 up to 500 m
- Optical Fibre Class OF-200 up to 2000 m

Starting with 4 Networks at Home

Separate networks for Communications, Information, Entertainment / Multimedia and Home Automation converge. Barriers to mains get lower.

ISO/IEC 15018: principles of ISO/IEC 11801 provide market success

Cabling and applications have different life cycles

ISO/IEC 15018: channels/links

- CCCB in coverage area: ≤ 100 kHz
 1 pair free topology @ 0,7 A /conductor
- CCCB to ACP: suitable for class D: ISO/IEC 11801
- ICT channel: ≤ 100 MHz → Class D: ISO/IEC 11801
- ICT with cable and connector sharing: class E (11801)
- BCT channel balanced: ≤ 1 GHz
- BCT channel coaxial: ≤ 3 GHz
 ≤ 1 GHz, when sufficient long term
- Optical channels: for further study

BCT-B coupling attenuation BCT-C screening attenuation

	BCT-B		BCT-C	
	Н	L	Η	L
@ MHz	dB	dB	dB	dB
$30 \le f \le 300$	85	75	85	75
300 ≤ <i>f</i> ≤ 470	80	75	80	75
470 ≤ <i>f</i> ≤ 1 000	75	65	75	65
$1\ 000 \le f \le 3\ 000$			55	50

H: higher immunity, L lower immunity

Hierarchical Structure of homecabling

Channels & permanent links in the home 1

18

Channels & permanent links in the home 2

= connection

ICT & BCT cabling in the "room"

High-performance channels may be implemented at high frequencies only point to point.

The standard does not limit the freedom of implementation

- Potential location for TO/BO
- With guarantied channel performance, thus within the standard.

Home Way®

Cable:

- TV cable (13 dB)
- Data cable (Category 5), shielded
- EIB cable

Connector:

- Telephone
- Data (PC-Network)
- TV/Radio (SAT-TV)

Connector IEC 61076-3-104

Connector IEC 61076-3-104

Connector IEC 61076-3-104

EXAMPLES: PLUG VARIANTS

25

CCCB cabling structure in the room

Example typical CCCB cabling topologies

- **CO** (switch and/or other door side features e.g.thermostats etc.)
 - CO (HVAC or window-side features e.g. sensors, shutter actuators)
 - --- CCCB cable for HVAC window-side COs
 - CCCB cable for lighting/smoke detector COs

typical ICT cabling topologie

Telecommunications outlet (TO)
ICT cable

ISO/IEC JTC 1/SC 25 Structure

29

Magnitude of cost 1

- o Futureproof infrastructure: larger distributors, deep boxes, precabling meeting ISO/IEC 15018 for all application groups: appr. € 800 to € 1.600 for a mansion (building conventions of Central Europe).
- o This replaces a conventional TV & Telephone cabling: ca. € 100 bis € 200.
- o This decreases the cost for protection against sabotage, masquerade and for malfunction.
 - Each false alarm, may cost € 80.

Magnitude of cost 2

o This villa offers:

- Connection points for TV, Telephon,
 PC in every room.
- Connection points for CCCB may be activated where ever wanted.
- Support for additional application equipment and functions without "construction, dirt, ..."
- Secure and reliable in-house communications

Magnitude of cost 3

- Each house needs to be calculating individuality. The cost for a conventional solution needs to be subtracted.
- o The price performance ratio increases with the elegancy of the solution.
- o It still pays off to start small.
- o The appetite grows during the meal.
- o You can satisfy it, without extra construction work and security risks
- o There is no limit to luxury.

I am happy to answer your questions.

Also feel free to consult the SC 25 Homepage: http://sc25.iec.ch/ and to contact me directly