CORNING Discovering Beyond Imagination

Update on ITU-T Q16/15

G.695, CWDM system interfaces: the black link T.A. Hanson

Q16/15 Background

- SG15: Transport
- Q16: Optical interfaces for SDH (and other) systems
 - G.957 (initial)
 - G.691 (up to 10 Gbit/s, single channel with amplifier)
 - G.692 (DWDM)
 - G.959.1 (inter-domain interface)
 - G.693 (very short distance)
 - G.694.1 (DWDM frequency grid)
 - G.694.2 (CWDM frequency grid)
 - G.695 (CWDM applications)

CWDM background

- Added low water fiber G.652.C (Q15/15)
 - Support 16-18 channels
- CWDM generically defined in G.671
- Decided to split the grid from the applications
- Wavelength grid: G.694.2
 - 1311 nm ± i * 20 nm (indefinitely) [uncooled DFB lasers]
- Applications: G.695
 - Channel plans
 - 4,8,16, unidirectional or bidirectional
 - Mux/deMux BW: 13 or 14 nm (tbd)
 - Tx Power levels
 - Rx Sensitivity/overload

Basic approach to link characteristics (singlechannel)

- Loss: The Tx/Rx must work with up to the maximum overall attenuation and also with the minimum.
 - Defined between reference points
 - Target length only
 - If actual link doesn't meet limits, owner must
 - Add dB pads
 - Go shorter distance
 - Remake splices
 - Take a risk
- Same approach for maximum Chromatic dispersion
- Same approach for maximum DGD

Approaches for multiple channels

- Full transverse compatibility problems:
 - Precise channel plans
 - Mux/DeMux bandwidth
 - Mux/DeMux Insertion loss (across channels)
 - Isolation/Crosstalk
- Black box (used in G.692 & G.959.1)
 - Longitudinal compatibility only
- Black link (new as of Jan. 2003)
 - Transverse compatibility at the Tx/Rx level

Compatibility levels

- Longitudinal:
 - Must have the same equipment vender for both Tx and Rx on a fiber pair
 - Can have different venders on different pairs
- Transverse
 - Can have different venders for Tx and Rx

Black box approach

CORNING

Full transverse compatibility

CORNING

Problems

- Too many parameters to get agreement
- Even if agreement possible, higher cost
- Limits on technology
- Mux/Demux units are practically installed as pairs
 - Attenuation/Insertion loss: linear
 - Allows balancing/optimization

Black link

Black link advantages

- Once link characteristics are defined between R and S, transverse compatibility possible at the TX/Rx level
- Interface points RP_s and RP_R are informative
 - Practical target length may be different for different regions
 - Different splice frequencies
- Need to add a maximum cross-talk value
 - Similar treatment as DGD
- Allows balanced or variable channel insertion loss
 - Trade Mux/DeMux vs. target length

Problem: Variable fibre attenuation

Approach to solution: Iterative

- Want: Common receiver characteristics
- May need:
 - Different power levels for different sub-bands
 - Different Mux/DeMux insertion loss for different sub-bands
- Start with fibre + notion of Mux/DeMux capability
- Assess power/sensitivity alternatives
- Refine Mux/DeMux capability
- Repeat
- Result: target length from defined set of assumptions
 - October 2003?

Commercial implications of black link

- Allows third party ownership of infrastructure
 - A conforming black link can carry multiple services
- City/State government could own the black link
 - Lease channels to different service providers
 - Who can obtain Tx/Rx from different venders
- City/State can finance over longer time
 - New business model for telecom?
- Similar model as airports

Opportunities

- Focused Mux/DeMux Recommendation from Q17/15
- Rest of infrastructure from SG6?
 - Requirements for termination points
 - Deployment strategies
- Consolidated testing regime from IEC 86C/WG1?
 - Attenuation
 - Isolation?
- New DWDM black link Recommendation from Q16/15?

CORNING Discovering Beyond Imagination