

Countermeasures against overvoltage in Japan and Proposals to SG5

T. Sato CIAJ

Outline

- o Resistibility and Immunity
- History of countermeasures against lightning
- o Countermeasures in Japan
 - Difference of infrastructure
 - Measures applied by manufacturers
 - Measured resistibility of terminal equipment
- Requests and proposal to ITU-T SG5

Forward

- This presentation is feelings, complaints, opinions and so on gathered from member (manufacturers) of working group on resistibility requirement.
- The opinions are not agreed or selected one. Great differences are there among the member.
- Even so, we hope this presentation can be reflected on establishment of Recommendations.

Resistibility and Immunity

- o Safety requirements
 - Insulation against malfunction in power system (leakage of high voltage power transmission)
 - Insulation against lightning surge
 - <u>Manufactures make their own requirement based on</u> <u>experiences and refers IEC 60950</u>
- o Reliability of equipment
 - Immunity (ESD, radiated, conducted, EFT, Surge etc.)
 - Resistibility (lightning surge, power induction, power contact)

Manufacturers mainly make measures against lightning

History of measures against lightning

- Lighting surge protection has been developed as follows
- 1. Plane telephone
 - small number of troubles
 - damage of terminal by power contact was rare
- 2. FAX/Key telephone
 - Arresters began to be introduced into the telephone set
- 3. ISDN
 - Great number of terminals are damaged News on TV
 - CIAJ has studied however agreement has not been obtained
- 4. ADSL
 - Less problems have occurred comparing to ISDN because preparation has been well done.

Analysis and prediction

- Problems occurred as new system is developed.
- ADSL had less problems because the requirement agreed between Operator and manufacturer was severer than K.21.
- A limited number of manufacturers are producing ADSL equipment.
- Countermeasures may get difficult for FTTH equipment, because it will be produced by large number of manufacturers and its network configuration is more complex.

Condition in Japan

• Earthing and bonding are no ideal in Japan

- Telecommunication line protector is connected to independent earth.
- SPD is not installed on the power line and no earth terminal at outlet in user building usually (TT power system).
- Manufacturers producing telecommunication and information systems have not applied the same requirement.
 - Telecommunication: ITU-T K.21
 - Information system: IEC 6100-4-5

Establishment of K.66 and reaction in Japan

- Appropriate requirement could not find and each manufacturer has applied their own method based on experience.
- Appropriate description for deciding application of the "Basic" or "Enhanced" levels.
- Recommendation K.66 was established and be confused more. Example
 - Is the requirement in K.21 insufficient?
 - The resistibility of 15 kV in K.66 is much higher than enhanced and basic levees 6 kV and 1.5 kV respectively.
 - The resistibility level is in Appendix (informative), therefore it is unclear if manufacturers should apply or not.

Measurement data of various terminal equipment (1)

	PBX							
EUT	A		В		С			D
Telecom power 13kV 10/700µs	Analog port F (12kV) >6kV	Digital port F (12kV) >6kV	Analog port G	Digital port G	Analog port G	Digital port F (13kV) > 9k V	Lowbitrat e Digital F (10kV)	Analog port G
Telecom. transverse 4kV 10/700 us	Analog port G	Digital port G	Analog port G	Digital port G	Analog port G	Digital port G	Lowbitrat e Digital G	Analog port G
Power - Earth 10kV Combinati	NA	NA	G		G			G
on Power transvese 10kV Combinati on	NA	NA	F (10kV) > 9k V		F(8kV)			F(8kV) > 6 kV

G: Good, F: Failed, Test level: 13 kV

Measurement data of various terminal equipment (2)

	Telephone		FAX	ADSL			
EUT	E	F	G		Η	Ι	J
Telecom power 13kV 10/700µs	NA	Analog port (hang up) G	Analog port (hang up) G	Analog port (lift up) F(13kV)	Analog port G	Analog port F(13kV) >10kV	PSTN G (20kV)
Telecom. transverse 4kV 10/700 us	port G	Analog port (hang up) G	Analog port (hang up) G	Analog port (lift up) G	Analog port G	Analog port G	PSTN G (6kV)
Power - Earth 10kV Combinati on	NA	F	G		F (10kV)	NA	G (15kV) G AC adapter
Power transvese 10kV Combinati on	G	F(9kV)	F(10kV)		F (8kV)	NA	G (12kV)

Measurement data of various terminal equipment (3)

	Home Gateway	Gateway					
EUT	Κ	L	М		Ν		
Telecom power 13kV 10/700µs	PSTN G (15 kV)	LAN port F(4kV) >2kV	LAN port F(4kV)	PRI (ISDN) port F(4kV)	Analog port F (13kV)	Analog port F (13kV)	
Telecom. transverse 4kV <u>10/700 us</u> Power -	G (6kV)	NA	NA	NA	Analog port G	NA	
Power - Earth 10kV Combinati on Power	G	F(8kV) >6kV	G		NA	NA	
Power transvese 10kV Combinati on	× ,	NA	F (6kV) >1kV		F(5kV)		

Analysis of test data

- 1. Interface for internal line (LAN port) is lower than 4 kV.
 - Testing configuration and requirements should be reconsidered.
- 2. The test levels for power port seems to be too high.
 - The output impedance of test generator for combination wave is very low. The test current is too large as contact of modular connector melt.

Analysis of test data (2)

- 3. Spark occurred in the AC outlet in the test setup a little higher than 10 kV.
 - Keeping enough insulation in AC outlet is important to obtain reliable data.
- 4. The termination method at ports other than the test port should be defined well.
- 5. Many ports other than for telephone has less resistibility than the requirement.

Proposals

- 1. It is difficult to understand the relationship between K.21, K.44, and K.66. We are keen to enlightenment.
- 2. The relationship between K.surege, K.interface and other Recommendations should be well described. It should be defined when new Recommendation is established.
- 3. It is difficult to read Recommendations because they are referring many Recommendations each other. Also the description of Recommendation should be adjusted as well as possible.

Proposal (2)

- Coordination between IEC standard is indispensable.
 - According to the IEC60664-1, impulse resistibility is 1.5 kV for apparatus on category II of 100V AC line. However, 2.5 kV and 6 kV are required in K.21.Coordination is necessary.
 - Liaison between IEC should be enhanced.
- 5. Test method using primary protector is unclear and description is not enough. We want simple and clear description of application method.
- 6. Numerical specification of primary protector is not described. Manufacturers want actual specification of primary protector.