

International Telecommunication Union

JPEG 2000 A versatile image coding system for multimedia applications

Touradj Ebrahimi

EPFL

ITU-T VICA Workshop 22-23 July 2005, ITU Headquarter, Geneva

Why another still image compression standard?

- Low bit-rate compression
- Lossless and lossy compression

- Computer generated imaging
- Transmission in noisy environments
- Compound documents
- Flexible progressive coding and random access
- **>** ...

Markets and Applications

- > Internet
- > Mobile
- > Printing
- Scanning
- Digital Photography
- Remote Sensing
- > Facsimile
- Medical
- > D-Cinema
- Digital Libraries
- > E-Commerce
- Space imaging
- **>** ...

ITU-T

JPEG 2000 family

Part1: Core Coding
System

Part3: Motion JPEG2000

Part4: Conformance Testing Part6: Compound Image File Format

Part2: Extensions

Part5: Reference Software

Part8: JPSEC (Secure JPEG2000) Part9: JPIP (Interactivity)

Part10: JP3D (3-D Extensions) Part11: JPWL (Wireless)

JPEG 2000 part I

- ➤ A set of tools covering a good proportion of application requirements (20-80 rules)
- Royalty fee-free, license-fee free (doesn't mean IPR free)
- Other parts are derived as extensions with backward compatibility to part I (baseline)
- Reached International Standard status on Dec. 2000
- Amendments have been defined since (one for D-cinema under progress)

Features in Part I

- > High compression efficiency
- Lossless colour transformations
- Lossy and lossless coding in one algorithm
- Embedded lossy to lossless coding
- Progressive by resolution, quality, position, ...
- Region-of-Interest coding/decoding
- Error resilience coding
- Perceptual quality coding
- Multiple component image coding
- > Tiling
- Palletized image coding
- Light file format (optional)
- **>** ...

Comparison of various algorithms from a functionality point of view

	JPEG 2000	JPEG-LS	JPEG	MPEG-4 VTC
lossless compression performance	+++	++++	+	-
lossy compression performance	+++++	+	+++	++++
progressive bitstreams	++++	-	+	++
Region of Interest (ROI) coding	+++	-	-	+
arbitrary shaped objects	-	-	_	++
random access	++	-	_	-
low complexity	++	+++++	+++++	+
error resilience	+++	+	+	+++
non-iterative rate control	+++	-	-	+
genericity	+++	+++	++	++

Coding rate-distortion comparisons

Lossless coding performance

JPEG 2000 algorithm overview

ITU-T

JPEG 2000 algorithm overview

Progressive by resolution

Progressive by quality

Layer (SNR) progressive example

Layer (SNR) progressive example

Layer (SNR) progressive example

Compression example

JPEG at 0.25 bpp (detail)

Compression example

JPEG2000 at 0.25 bpp (detail)

Compression example

Comparison between Jpeg/Jpeg 2000

ITU-T

Jpeg 20:1

Jpeg 50:1

Original Image

Jp2 20:1

Jp2 50:1

Jp2 100:1

Region of Interest coding principle

- Region of Interest (ROI) coding allows a non-uniform distribution of quality. The ROI is coded with a higher quality than the background (BG). A higher compression ratio can be achieved with same or higher quality inside ROIs.
- Static ROIs are defined at encoding time and are suitable for storage, fixed transmission, remote sensing, etc. Commonly referred to as ROI coding.
- O Dynamic ROIs are defined interactively by a user in a client/server situation during a progressive transmission. Suitable for telemedicine, PDAs, mobile communications, etc. They can be achieved by the dynamic generation of layers matching the user's request.

Lossless ROI mask generation

ROI in image domain

ITU-T

Encoding ROIs: scaling

- Shift up quantized ROI coefficients by s bitplanes. The value of s is recorded in the codestream header for each ROI.
- At decoder ROI coefficients are unshifted prior to dequantization.
- The ROI mask is required at both, encoder and decoder.
- o In maxshift, s is large enough to separate ROI and BG
 - No ROI mask required at decoder
 - ROI <-> BG quality differential not controlled

ITU-T

ROI Maxshift example

ROI

45:1 (almost all ROI decoded)

ROI covers 5% of image, 2 lowest resolution levels in ROI mask. Magnified portion shown.

ROI Maxshift example (cont'd)

ITU-T

ROI

4:1 (complete decode)

ROI covers 5% of image, 2 lowest resolution levels in ROI mask. Magnified portion shown.

Error resilience example

16:1 compression ratio. Transmission error rate 10⁻⁵. No errors in codestream header. Magnified portion shown.

ITU-T

No transmission errors

No error resilience

Full error resilience

Error protection techniques

- Coded image data
 - Code-block partition
 - Regular termination of arithmetic coder
 - Segmentation symbols
- o Packet heads
 - Start of packet markers
 - Packet heads in main / tile codestream header
 - Partition of packets into precincts

Error resilience visual results

Bit error rate = 10^{-5}

ITU-T

JPEG 16:1 CR

JPEG 2000 16:1 CR

Images with median quality, of 200 runs

Error resilience visual results

Bit error rate = 10^{-4}

ITU-T

JPEG 16:1 CR

JPEG 2000 16:1 CR

Images with median quality, of 200 runs

JPEG 2000 File Format: JP2

- o JP2 is the optional JPEG 2000 file format to encapsulate JPEG 2000 codestreams.
 - Extension: jp2
 - Allows to embed XML information (e.g., metadata)
 - Alpha channel (e.g., transparency)
 - Accurate color interpretation
 - "True color" and "palette color" supported
 - Intellectual property information
 - Capture and default display resolution
 - File "magic number"
 - File transfer errors (ASCII ftp, 7 bit e-mail, etc.)