

International Telecommunication Union

Session 7: Wrap-Up Conclusions & Suggestions

Session Chairs:

P.A. Probst, S. Okubo, D. Lindbergh, G. Sullivan,

I. Sebestyen, A. Webster, T. Ebrahimi, J. Osterman

Session chair notes

Session 1 – Network Platforms

Session 1 – Network Platforms

- Opportunities for the transport of video and image
 - Convergence of telephone including multimedia communications, digital audiovisual including broadcasting, Internet access, tele-control (HN)
 - Higher bandwidth and controlled QoS (NGN)
- Limitations to the transport of video and image
 - Need for accommodating more channels, use of MPEG-2 transport (cable)
 - Terminal price, size, complexity, packet erasure (mobile)
 - Share the network nature (Internet)

Session 1 – Network Platforms

- o More compression is yet to be sought
- Adaptation to mobile networks as well as its terminals and the Internet is to be further explored
- New generation video coding is to be standardized in a few years time, but not now
- Reconsider backward compatibility where appropriate

Session 2 - Applications

Session 2 - Applications

- A new generation of video coding based on H.264/AVC is sweeping the world
- Standards stability is very important
 - Esp. for long-term archival storage
- Video apps need platform flexibility, error robustness, high compression
- Tamper resistance, selectable ROI very useful in surveillance applications

Session 3 – Digital Video

ITU-T

Session 3 – Digital Video

- The new generation of advanced video coding designs (e.g., H.264/AVC, VC-1, AVS) can provide very substantial improvements in capability relative to the prior generations (e.g., H.262/MPEG-2, H.263, MPEG-4pt2)
- A diversity of such new video codec designs are appearing as candidates for use in applications
- Various trade-offs of compression capability, loss resilience, computational complexity, licensing terms, time-to-market, etc. can be found in recent video coding design efforts
- Design approaches include single-company design, open collaborative design, and IPR-guided open design
- H.264/MPEG-4 AVC has been extended to enhance professional and highquality/high-resolution uses
- Future work will extend H.264/AVC to add "scalability" (with strong efforts to be more successful than past such work)

Session 3 – Digital Video

- H.264/AVC illustrates an open collaborative design approach conducted in major standards bodies
- VC-1 illustrates the single-company design approach with postdesign standardization
- New approaches to IPR handling are being tried in AVS for design and intra-China licensing approaches, while "RAND" with post-design patent pooling is the usual approach
- IPR issues affect deployment adoption decisions by industry (and motivations of design participants)
- Better understanding, and perhaps new approaches, may be a key element of success for future coding technology

Session 4 - Image Coding

Session 4 - Image Coding

- JPEG/JBIG is an excellent example of ISO/IEC and ITU-T cooperation
- Standards all have complex IPR
 - Effective handling is key to success (or failure)
- Recommendation 1: Take the IPR Policies and their implementation very seriously, introduce ITU-T/ISO "external" efforts for supporting this
 - (e.g. patent searching by Members and communication results to the committee, better links and information exchange between standardization and licensors, users)

Session 4 - Image Coding

- Generally, the still image work should be independent from communication protocol work
 - Might be exceptions
- Recommendation 2: It is for further study when those exceptions are justified
- Recommendation 3: Improved interaction, exchange of information and cooperation between codec standardization and protocol/application standardization is needed (for instance between JPEG and 3GPP)

Session 5 - Performance measurements and assessments

ITU-T

Highlights from Presentation 1 "Towards a standardised perceptual quality metric for multimedia" / David Hands

- Measurement of user experience is essential to the industry
- Traditional quality measures are inadequate
- Requirement is for objective perceptual metrics
- VQEG MM Validation Test for perceptual metrics
 - Goal is to evaluate objective metrics
 - FR, RR, NR models
 - 3 stages: video only, audio only, audio-video
 - Plan to be publish final report September 06

ITU-T

Highlights from Presentation 2 "General purpose objective video quality measurement tools" / Steve Wolf

- o Laboratory VQM Tool
 - Designed for Bench Top Evaluation
 - Source and Destination Video Signals / Files Available at One PC
 - UNIX (Batch) and PC (Interactive) Versions
- o In-Service VQM (IVQM) Tool
 - End-to-End Measurements
 - Requires Two PCs (Source and Destination)
 - RR Features Communicated over Internet

Highlights from Presentation 3 "State of the art of multimedia quality assessment methods" / Takanori Hayashi

- Multimedia quality assessment is at an advanced stage (subjective at least).
- Perceptual quality assessment methodologies for multimedia communications systems of the next generation are being discussed.
- o Three important characteristics of upcoming services have been revealed by recent studies on multimedia quality evaluation models:
 - Multimodality, multiparty, and wideband.

ITU-T

Session 5 - Conclusions & Recommendations

- Measurement of user experience is essential to the industry
- Subjective methods are mature for television and fairly well along for multimedia
- Objective methods are needed and effective products have recently become available —primarily for standard definition television
- More work needs to be done for multimedia, HDTV, and to improve accuracy of Objective models especially for error conditions
- Closer interaction with the coding experts in SG16 and ISO/IEC is recommended

Session 6 - Future Trends in VICA

Session 6 - Future Trends in VICA

- New compression schemes are being investigated and would lead to next generation coding standards
- Next compression standards should bear in mind the characteristics and parameters of the future deployment environments
 - Network, Display, Capture, Complexity, ...
- Need for compression in particular applications should be continuously reassessed
- The issue of perceptual quality metrics is fundamental in the improvement of current and future compression standards

General workshop observations

Interoperability and Flexibility

o These are related!

- Standards should be flexible, not narrow
 - Support many applications; convergence
 - Work in many hardware environments
 - Avoid transcoding
 - Minimize number of interoperability points
 - Compression ratios high to lossless
 - Graceful degradation, scalability
 - Error robustness
 - Tradeoff: Less optimization

Interoperability and Stability

ITU-T

- Allow time for adoption & deployment
- Avoid fragmentation of standards cmtes
 - Regional standards, "turf wars"
- o Fewer standards, less often
 - Larger jumps in performance
 - Archival storage long term
 - Tradeoff: Less market responsiveness

Look Forward, not Backward

- Start from scratch ("clean-sheet")
 - Avoid complications from legacy support
- Architect consider broader applicability
 - Consider other similar problems
 - Big picture, not a bit at a time
- Design don't just imitate
 - Reconsider legacy features

Define Requirements Carefully

- o Improve the requirements process
 - Focus on what industry will really adopt
 - Keep things simple complexity = failure
- Source & Channel coding
 - Need a balance
 - Responsibility must land somewhere
- Semantics first then transport
 - Consider if message really needed at all?

Performance Standards Needed

- o For reference at least
 - Maybe requirements?
- Encoder quality measurement standards
- Perceptual quality measurement standards
- o Perceptual models will be important
 - Avoid technology lock-in, specmanship
 - Clarify applicability/lack thereof

Video Coding

- o Coding efficiency
 - Not clear that even H.264 is good enough
- Reduce computational complexity
 - Cost, battery, heat limits = poor quality
 - Simultaneous decoders
 - Encoder/decoder complexity tradeoff
- Enhanced tools for data integrity
- Tools to facilitate video event generation

Design for Real Networks

- o Design for the environment of use
 - Tradeoff: Interoperability, transcoding
- o Lots of bandwidth (sometimes)
 - Not so batteries, computes...
- o Data integrity
 - Error detection, error resilience important
- Consider network transmission characteristics from start
 - Don't try to retro-fit later

Avoid Redundant Design

- o Make use of infrastructure services
 - Don't re-invent at each layer
- Use tools as they were designed
 - Don't overload with unintended functions

IPR Licensing

- Complex patent licensing sometimes a major barrier
 - Cost is an issue
 - Uncertainty is a bigger issue
- Royalty-free, License-free
 - Desirable
 - Maybe difficult to achieve
- o Reducing uncertainty would be useful!

Networks and Centralization

- o NGN, 3G, 4G [WiFi?] networks are coming
- o Where should the intelligence be?
 - Service providers in the network
 - Equipment mfrs in the endpoints
- Everybody wants to add value
- Need is to focus on real user values
 - Cost, performance, robustness...
 - Innovation, flexibility, creativity...

Summary

- o Don't do it just because we always have
- Everything is a cost-benefit tradeoff
 - Market responsiveness vs. fragmentation
 - Backward compatibility vs. cost & performance
 - Timeliness vs. reliability
 - Consequences of failure?
 - Everything is a tradeoff
 - Perfection is impossible