

Machine-Learning for Supporting Drought Risk Management

Arthur Hrast Essenfelder European Commission – Joint Research Centre (EC-JRC)

Webinar – Land Reborn: Digital Solutions for Combating Desertification and Drought Resilience Session 1: Greening the Future: Navigating Digital Transformation for Land Restoration 05/06, 14:00 - 15:00 CEST

COPERNICUS EMERGENCY MANAGEMENT SERVICE

Risk categories 2 years Economic 1ª Msinformation a Environmental 2ª Extreme weather Geopolitical 3ª Societal polariza Societal 3ª Cyber insecurity Technological 4th Cyber insecurity 6th Lack of economic 6th

8th

9th

ML applications in DRR

Source

World Economic Forum Global Risks Perception Survey 2023-2024.

PROGRAMME OF THE EUROPEAN UNION

Annual average number of (millions) **Annual average number of (millions)** Annual average number of (2001 - 2020)

COPERFICUS Europe's eyes on Earth

Challenges in Drought Risk Management

Drought Characterisation and Forecasting

- Why extreme events, such as droughts, matter?
 - 'High-impact, low-probability' (HILP) events (e.g. Summer of 2022)
- To prepare for such events, one must:
 - 1. Observe trends;
 - 2. Forecast outcomes, and
 - 3. Evaluate scenarios for better mitigating any potential threat
- Yet, droughts are not trivial to define in time and space

Time periods

Source: Zhuang et al., 2022

Data source: ERA5 reanalysis

Expertise from the JRC

Areas of Concern

- Each month the JRC issues the MARS Bulletin on the assessment of European crops' status and yield forecasts.
- Synthetic maps called **Areas of Concern (AOC)** are produced in each Bulletin depicting extreme weather events and their impact during the analysis period.
- AOC are defined based on a range of quantitative and qualitative agro-meteorological data and heavily relying on expert analysis.

European (EDO) and Global (GDO) Drought Observatories

Al-based first guess of Areas of Concerns

Gradient Boosted Trees Model

- We build an ensemble of Gradient Boosted Decision Tree models to produce a first-guess of AOC, which can then be more easily digested by an expert.
- We use both ERA5 and CEMS data for detecting and analysing various meteorological AOC
- Data is passed as mean, anomalies and standardized-anomalies (where applicable) for the specific period of analysis
- A class-balanced approach based on a simple proportion between the positive and negative classes is implemented to adjust for the importance of each class during training
- The model uses a logistic regression objective function for the binary classification of a cell as an AOC or not
- A collection of 1,000-folded individually-trained models for each AOC type is implemented.

AREAS OF CONCERN - EXTREME WEATHER EVENTS Meteorological event Definition Based on weather data from 1 May 2022 until 17 June 2022 Cumulated rainfall RA: ± 25% observed in two or more analysis period Rain excess or rain deficit RA: ± 50% over the analysis period One or more days with daily precipitation > 50 mm Cumulated radiation Radiation deficit RA: ± 25% observed in two or more analysis RA: ± 50% over the analysis period Heat wave Three or more days with Tmax > 30 °C and no precipitation One day with Tmin < -18 °C or Two or more days with Tmin < -10°C or Cold spell Three or more days with Tmin < 0 °C Average Tmin has RA < -50% Three or more days with 25 °C < Tmax < 30 °C and no precipitation Hot and dry conditions Average Tmax has RA > 0% Rain deficit event observed for at least two or more analysis Drought Evidence of effect on crops from remote sensing observation Drought Rain deficit Temperature accumulation Sum of average temperatures (Tsum) RA: ± 50% over the analysis period surplus or deficit Heat wave Cold spell

DATASET	Dataset Description	VARIABLE	Variable Description	SI Unit
CEMS	Copernicus Emergency Management Service (CEMS) European Drought Observatory (EDO)	spi01	SPI (1-month accumulation)	-
		spi03	SPI (3-months accumulation)	-
		spi06	SPI (6-months accumulation)	-
		spi09	SPI (9-months accumulation)	-
		spi12	SPI (12-months accumulation)	-
		sma	ensemble soil moisture anomaly	-
		fapar	fAPAR anomaly	-
ERA5- derived	Variables derived from the ERA5 <u>database</u> (frequency of days)	daystmax25a30C	number of days when \max is between 25 and 30°C	days
		daystmax30C	number of days when tmax is larger than 30°C	days
		daystmin0C	number of days when tmin is lower than 0°C	days
		daystminm10C	number of days when tmin is lower than 10°C	days
		daystminm18C	number of days when tmin is lower than 18°C	days
		daystp01mm	number of days when to is over 1mm	days
		daystp30mm	number of days when to is over 30mm	days
	Variables derived from the ERA5 <u>database</u> (mean and anomalies)	msla	air pressure at sea level	Pa
		spa	surface air pressure	Pa
		t2ma	near-surface air temperature	К
		tmaxa	maximum near-surface temperature in period	Κ
		tmina	minimum near-surface temperature in period	К
		z500a	reconctential height	m2 e-1

Results – Evolution Log (boosting rounds)

TSumD

Results – Variable Importance Matrix

Gain: higher values indicate that a variable is more important for generating a prediction.

- **Cover**: measures the relative number of observations related to this feature. It is related to the second order derivative (or Hessian) of the loss function with respect to a particular variable.
- **Frequency:** relative number of times a particular feature occurs in the trees of the model.

PROGRAMME OF THE EUROPEAN UNION

Al-based first guess of Areas of Concerns – Droughts

- <u>Gain</u>: higher values indicate that a variable is more important for generating a prediction.
- **Cover**: measures the relative number of observations related to this feature.
- **<u>Frequency</u>**: relative number of times a particular feature occurs in the trees of the model.

ERA5 Drivers of 2022 First-Guess

EUROPEAN UNION

icus prope's eyes on Earth

ERA5 Drivers of 2022 First-Guess – Droughts

ERA5 Drivers of 2022 First-Guess – AOCs

Example of the first-guess identification of AOC over Europe during the period of analysis covered in the MARS Bulletin of January 2022; a) Actual meteorological AOC in the MARS Bulletin. The AOC first-guess when about: b) two-thirds; c) 90%, and d) 95% of the XGBoost models agree on the detection of a certain AOC type.

Conclusions

- We have developed a <u>hybrid xAI-based model</u> that results from the combination of data-driven xAI methods with the expert-based knowledge produced in JRC to provide a first-guess of meteorological extremes as AOCs in Europe
- The proposed solution tackles two currently frontiers in science:
 - 1. A system for the detection, in space and time, of multi-hazard extreme events
 - 2. The application of (x)AI-based methods in a context of DRR for droughts
- The developed model/solution is <u>xAI-based</u> as it is both <u>interpretable</u> (i.e. the results given and decision taken by the AI system is understandable) and <u>transparent</u> (i.e. capable of understanding which kind of data it uses, how the system works, and how it takes decisions).
- Potential future <u>policy relevance</u>: Water Resilience Initiative; Climate Adaptation Strategy; EU Civil Protection Mechanism; Common Agriculture Policy (CAP); Early Warning for All (WMO)

STAY CONNECTED

EVENTS, ONLINE, and MAP VIEWERS

@CopernicusEMS

emergency.copernicus.eu

activations.emergency.copernicus.eu

