

Cognitive TD-LTE System Operating in TV White Space in China

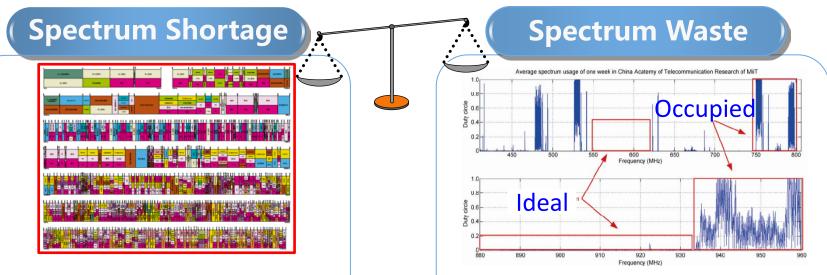
Challenges, Solutions and Testbed

Prof. Zhiyong Feng, Dr. Ying Xu Key Laboratory of Universal Wireless Communications, Ministry of Education Beijing University of Posts and Telecommunications

> ITU-R WP 5A, Geneva, Switzerland 18 November, 2013

Background

Challenges and Solutions in Cognitive TD-LTE System


- Cognitive Ability
- Autonomous Decision Making
- Adaptive Reconfiguration Ability

Testbed for Cognitive TD-LTE System

Spectrum Usage

Current spectrum usage is experiencing coexistence of spectrum shortage and waste.

Existing bands have been exhausted

- There is a growing demand on spectrum resource due to the increasing demand on wireless transmission.
- The importance and scarcity of spectrum have become increasingly prominent.

TV white space is insufficiently used

- Field test of spectrum occupation at BUPT campus in China shows that spectrum efficiency is Less than 5%, surprisingly similar to the data released by FCC.
- Spectrum is insufficiently used in both time and frequency.

How to efficiently utilize the vacant spectrum resource

- Requirement 1: Flexible transmission bandwidth
- Requirement 2: Dynamic spectrum management

Solution: Cognitive Radio System !

Why operate cognitive TD-LTE system in TV White Space

Network Selection : Cellular Network

• Cellular network is the pillar of telecommunication industry. Utilizing cognitive technology to solve spectrum usage in cellular network is of great importance.

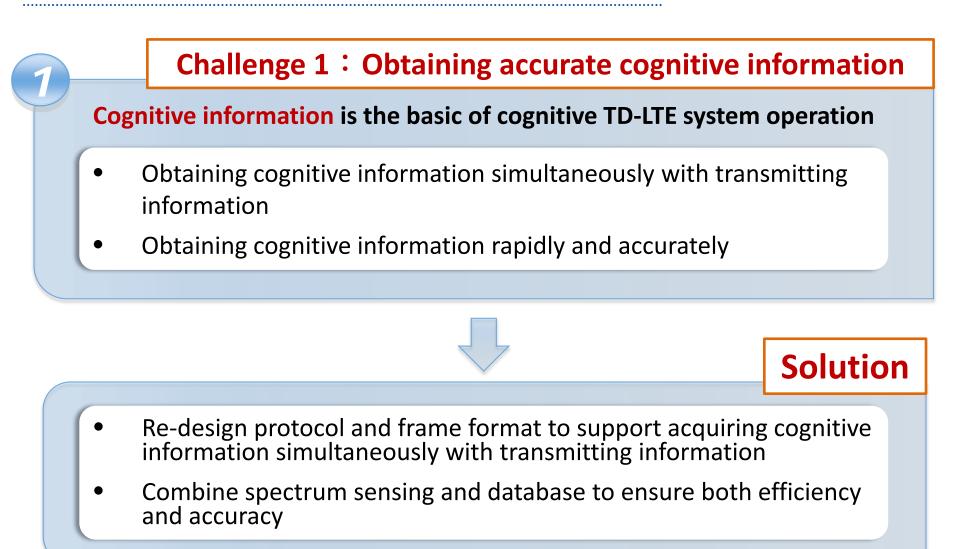
Mode selection: TD-LTE

- Broadband China Strategy requires the deployment of 3G/LTE networks.
- TDD can operate in unpaired spectrum, whereas FDD requires paired spectrum. Thus, TDD offers more flexibility in spectrum usage.

Band Selection: UHF Band

• Coexist with broadcast TV services to realize high efficiency of spectrum utilization.

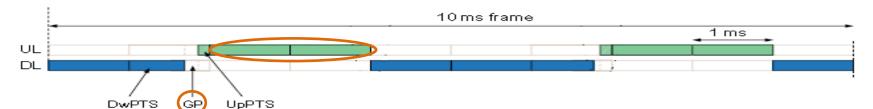
Background


Challenges and Solutions in Cognitive TD-LTE System

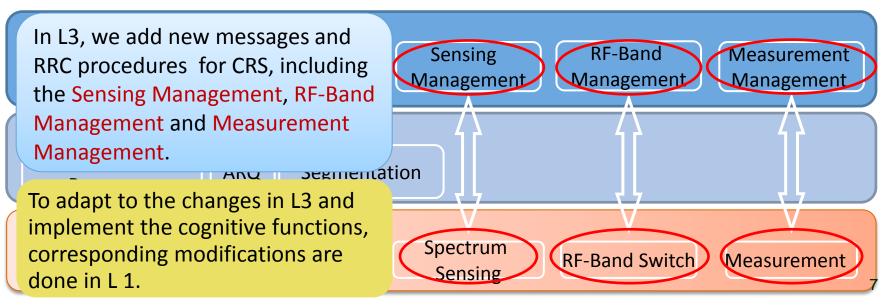
- Cognitive Ability
- Autonomous Decision Making
- Adaptive Reconfiguration Ability

Testbed for Cognitive TD-LTE System

Technical Challenges



Obtaining Cognitive Information

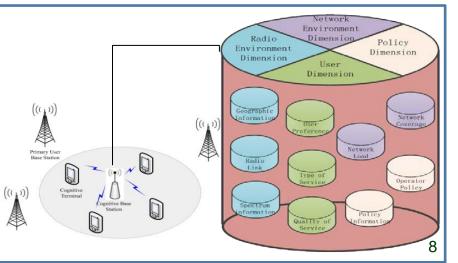


Frame Format Design and Protocol Design

Frame Format Design: UL-DL Guard Period and Uplink Time Slot are used to implement collaborative sensing. It enables real-time cognitive information transmission and breaks the limitation of conventional silence duration.

Protocol Design: The cognitive communication protocol is designed based on TD-LTE-Advanced protocol, by adding the cognitive functions.

Obtaining Cognitive Information


Methods for obtaining cognitive knowledge

	Spectrum sensing	Database
Advantages	 Suitable for dynamic changing environment Fast local information update 	Global information managementEfficient information sharing
Disadvantages	 Sensing time cost and hardware cost Miss detection, false alarm, location difficulty for hidden node 	 Slow response to rapid changing radio environment Slow local information update

Both two methods of obtaining cognitive information have disadvantages

Combine the two methods

- Advantages
 - Obtain global information via database, and update regional (local) information via spectrum sensing.
 - Overcome the hidden node problem, improve the accuracy of spectrum sensing, avoid interference, reduce the overhead

Obtaining Cognitive Information

Three zones use case

- Database stores accurate information, such as locations and borders of white zone, black zone and grey zone.
- The secondary users access database first and implement spectrum sensing only when necessary.

The secondary users in white zone can utilize the vacant spectrum freely without spectrum sensing.

It is difficult to coexist with TV system in black zone, and orthogonal frequency can be used by checking the database information.

rev Lone

Black Zone

Beijing University of Posts

and Telecommunications

XIV Tower		
Users in gray zone can utilize the		
vacant spectrum opp	portunistically	

Name	Meaning	Comment Comment
White Zone Range	Distance between PU and SU>Y km	Secondary users beyond this range can deploy freely without spectrum sensing function.
Black Zone Range	Distance between PU and SU <x km<="" th=""><th>Secondary users within this range can't work on the same spectrum as PUs absolutely, check the database.</th></x>	Secondary users within this range can't work on the same spectrum as PUs absolutely, check the database.
Grey Zone Range	X km <distance between="" pu<br="">and SU<y km<="" th=""><th>Secondary users within this range should perform spectrum sensing before transmission.</th></y></distance>	Secondary users within this range should perform spectrum sensing before transmission.

Technical Challenges

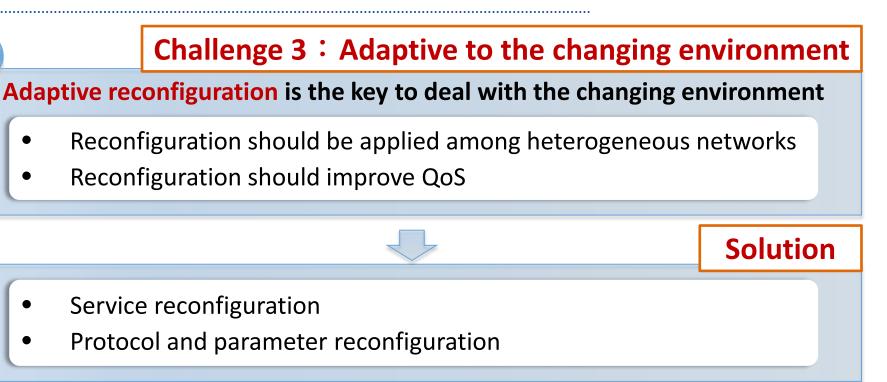
Spectrum management complexity increases with management scope

Spectrum management should be applied:

- For both inter-cell and intra-cell
- Rapidly and efficiently

Solution

Two-level spectrum management mechanism


- Global: inter-cell spectrum management, large time granularity
- Local: intra-cell spectrum management, small time granularity

Result

Validated in the lab, the proposed mechanism has a 30% growth of spectrum utilization compared to fixed spectrum management.

Technical Challenges

	Packet Loss Probability	Transmission latency	
Before Reconfiguration	5.36%	90.9965ms	
After Reconfiguration	0.27%	27.9953ms	

Result

Background

Challenges and Solutions in Cognitive TD-LTE System

- Cognitive Ability
- Autonomous Decision Making
- Adaptive Reconfiguration Ability

Testbed for Cognitive TD-LTE System

Testbed for Cognitive TD-LTE System

System Architecture ASM Server: Advanced Spectrum Management CPC Server: Server **Cognitive Pilot** Self -X Channel Server ASM CPC JRRM 🛐 Server 🛃 Server Cognitive Database CPC BS: Cognitive **Pilot Channel Base** D TD-SCDM Station GSM Primary User Internet Multi-dimension CPC BS cognition database CBS 1 · E CBS 1 1. CROT: CROTS CROTS CROT1 **CBS:** Cognitive Cognitive **Base Station Radio Terminal**

The platform is mainly composed of the Wireless Access side and Network side. It is designed to implement a cognitive network with centralized dynamic spectrum allocation to improve the spectrum efficiency and verify the heterogeneous network convergence.

Beijing University of Posts

and Telecommunications

Testbed for Cognitive TD-LTE System

Testbed characteristics

• Spectrum Range of Testbed

- 700MHz-2.8GHz scalable spectrum range
- Bandwidth: 1.25-20MHz
- Frequency point switch time: <5ms

• Support Multiple Standards

- 2G: GSM, CDMA
- 3G: TD-SCDMA, WCDMA, CDMA2000
- 3G+: LTE
- IEEE: 802.11b/g/n, WiMAX

High Computing Ability

- 9 DSP cores with 1.2GHz high speed, 86.4G MIPs, 86.4G MACs
- Support 2-4 antennas MIMO, support 100Mbps LTE standard
- Satisfy various signal and protocol processing requirements of different wireless communication standards
- Satisfy real time requirement of spectrum cognition in large scale

ò		FCC standards	Platform Indications
	Sensing granularity	-114dBm	TV -120dBm Radar -113dBm
	Sensing period	Off service: 30s On service: 60s	10ms
	Sensing rate	N/A	TV 4ms Radar 3ms
	Handover time	2s	50ms

Thank you for your attention!

Email: fengzy@bupt.edu.cn

Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, China.